Computer Science > Machine Learning
[Submitted on 2 Dec 2024]
Title:Effectiveness of L2 Regularization in Privacy-Preserving Machine Learning
View PDF HTML (experimental)Abstract:Artificial intelligence, machine learning, and deep learning as a service have become the status quo for many industries, leading to the widespread deployment of models that handle sensitive data. Well-performing models, the industry seeks, usually rely on a large volume of training data. However, the use of such data raises serious privacy concerns due to the potential risks of leaks of highly sensitive information. One prominent threat is the Membership Inference Attack, where adversaries attempt to deduce whether a specific data point was used in a model's training process. An adversary's ability to determine an individual's presence represents a significant privacy threat, especially when related to a group of users sharing sensitive information. Hence, well-designed privacy-preserving machine learning solutions are critically needed in the industry. In this work, we compare the effectiveness of L2 regularization and differential privacy in mitigating Membership Inference Attack risks. Even though regularization techniques like L2 regularization are commonly employed to reduce overfitting, a condition that enhances the effectiveness of Membership Inference Attacks, their impact on mitigating these attacks has not been systematically explored.
Submission history
From: Nikolaos Chandrinos [view email][v1] Mon, 2 Dec 2024 14:31:11 UTC (146 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.