Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Dec 2024]
Title:Grayscale to Hyperspectral at Any Resolution Using a Phase-Only Lens
View PDF HTML (experimental)Abstract:We consider the problem of reconstructing a $H\times W\times 31$ hyperspectral image from a $H\times W$ grayscale snapshot measurement that is captured using a single diffractive optic and a filterless panchromatic photosensor. This problem is severely ill-posed, and we present the first model that is able to produce high-quality results. We train a conditional denoising diffusion model that maps a small grayscale measurement patch to a hyperspectral patch. We then deploy the model to many patches in parallel, using global physics-based guidance to synchronize the patch predictions. Our model can be trained using small hyperspectral datasets and then deployed to reconstruct hyperspectral images of arbitrary size. Also, by drawing multiple samples with different seeds, our model produces useful uncertainty maps. We show that our model achieves state-of-the-art performance on previous snapshot hyperspectral benchmarks where reconstruction is better conditioned. Our work lays the foundation for a new class of high-resolution hyperspectral imagers that are compact and light-efficient.
Current browse context:
cs.CV
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.