Computer Science > Computer Vision and Pattern Recognition
[Submitted on 11 Dec 2024]
Title:Breaking the Bias: Recalibrating the Attention of Industrial Anomaly Detection
View PDF HTML (experimental)Abstract:Due to the scarcity and unpredictable nature of defect samples, industrial anomaly detection (IAD) predominantly employs unsupervised learning. However, all unsupervised IAD methods face a common challenge: the inherent bias in normal samples, which causes models to focus on variable regions while overlooking potential defects in invariant areas. To effectively overcome this, it is essential to decompose and recalibrate attention, guiding the model to suppress irrelevant variations and concentrate on subtle, defect-susceptible areas. In this paper, we propose Recalibrating Attention of Industrial Anomaly Detection (RAAD), a framework that systematically decomposes and recalibrates attention maps. RAAD employs a two-stage process: first, it reduces attention bias through quantization, and second, it fine-tunes defect-prone regions for improved sensitivity. Central to this framework is Hierarchical Quantization Scoring (HQS), which dynamically allocates bit-widths across layers based on their anomaly detection contributions. HQS dynamically adjusts bit-widths based on the hierarchical nature of attention maps, compressing lower layers that produce coarse and noisy attention while preserving deeper layers with sharper, defect-focused attention. This approach optimizes both computational efficiency and the model' s sensitivity to anomalies. We validate the effectiveness of RAAD on 32 datasets using a single 3090ti. Experiments demonstrate that RAAD, balances the complexity and expressive power of the model, enhancing its anomaly detection capability.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.