Computer Science > Computation and Language
[Submitted on 26 Jan 2025]
Title:Large Language Models as Theory of Mind Aware Generative Agents with Counterfactual Reflection
View PDF HTML (experimental)Abstract:Recent studies have increasingly demonstrated that large language models (LLMs) possess significant theory of mind (ToM) capabilities, showing the potential for simulating the tracking of mental states in generative agents. In this study, we propose a novel paradigm called ToM-agent, designed to empower LLMs-based generative agents to simulate ToM in open-domain conversational interactions. ToM-agent disentangles the confidence from mental states, facilitating the emulation of an agent's perception of its counterpart's mental states, such as beliefs, desires, and intentions (BDIs). Using past conversation history and verbal reflections, ToM-Agent can dynamically adjust counterparts' inferred BDIs, along with related confidence levels. We further put forth a counterfactual intervention method that reflects on the gap between the predicted responses of counterparts and their real utterances, thereby enhancing the efficiency of reflection. Leveraging empathetic and persuasion dialogue datasets, we assess the advantages of implementing the ToM-agent with downstream tasks, as well as its performance in both the first-order and the \textit{second-order} ToM. Our findings indicate that the ToM-agent can grasp the underlying reasons for their counterpart's behaviors beyond mere semantic-emotional supporting or decision-making based on common sense, providing new insights for studying large-scale LLMs-based simulation of human social behaviors.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.