Computer Science > Data Structures and Algorithms
[Submitted on 13 Mar 2006]
Title:Homogeneity vs. Adjacency: generalising some graph decomposition algorithms
View PDFAbstract: In this paper, a new general decomposition theory inspired from modular graph decomposition is presented. Our main result shows that, within this general theory, most of the nice algorithmic tools developed for modular decomposition are still efficient. This theory not only unifies the usual modular decomposition generalisations such as modular decomposition of directed graphs or decomposition of 2-structures, but also star cutsets and bimodular decomposition. Our general framework provides a decomposition algorithm which improves the best known algorithms for bimodular decomposition.
Submission history
From: Vincent Limouzy [view email] [via CCSD proxy][v1] Mon, 13 Mar 2006 09:48:49 UTC (43 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.