[Tourbillons dans un condensat de Bose–Einstein dipolaire]
Les vortex quantiques sont un marqueur fort de la superfluidité, et sont souvent recherchés comme première caractéristique observable dans les nouveaux systèmes superfluides. Suite aux récentes observations de vortex dans des condensats de Bose–Einstein constitués d’atomes en interaction intrinsèquement à longue portée [Nat. Phys. 18, 1453-1458 (2022)], nous étudions en détail les propriétés des vortex dans le régime dominé par les interactions dipolaires tridimensionnelles et dont la stabilité dépend crucialement des effets au-delà du champ moyen, et nous étudions l’influence de la géométrie du piège et de l’angle d’inclinaison du champ magnétique.
Quantized vortices are the hallmark of superfluidity, and are often sought out as the first observable feature in new superfluid systems. Following the recent experimental observation of vortices in Bose–Einstein condensates comprised of atoms with inherent long-range dipole-dipole interactions [Nat. Phys. 18, 1453-1458 (2022)], we thoroughly investigate vortex properties in the three-dimensional dominantly dipolar regime, where beyond-mean-field effects are crucial for stability, and investigate the interplay between trap geometry and magnetic field tilt angle.
Révisé le :
Accepté le :
Première publication :
Publié le :
Mot clés : Atomes ultrafroids, vortex quantiques, interactions à longue portée, supersolidité
Thomas Bland 1 ; Giacomo Lamporesi 2 ; Manfred J. Mark 1, 3 ; Francesca Ferlaino 1, 3
@article{CRPHYS_2023__24_S3_133_0, author = {Thomas Bland and Giacomo Lamporesi and Manfred J. Mark and Francesca Ferlaino}, title = {Vortices in dipolar {Bose{\textendash}Einstein} condensates}, journal = {Comptes Rendus. Physique}, pages = {133--152}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S3}, year = {2023}, doi = {10.5802/crphys.160}, language = {en}, }
TY - JOUR AU - Thomas Bland AU - Giacomo Lamporesi AU - Manfred J. Mark AU - Francesca Ferlaino TI - Vortices in dipolar Bose–Einstein condensates JO - Comptes Rendus. Physique PY - 2023 SP - 133 EP - 152 VL - 24 IS - S3 PB - Académie des sciences, Paris DO - 10.5802/crphys.160 LA - en ID - CRPHYS_2023__24_S3_133_0 ER -
Thomas Bland; Giacomo Lamporesi; Manfred J. Mark; Francesca Ferlaino. Vortices in dipolar Bose–Einstein condensates. Comptes Rendus. Physique, Volume 24 (2023) no. S3, pp. 133-152. doi : 10.5802/crphys.160. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.160/
[1] Statistical hydrodynamics, Il Nuovo Cimento (1943-1954), Volume 6 (1949) no. 2, pp. 279-287 | DOI | MR
[2] Chapter II Application of Quantum Mechanics to Liquid Helium (C.J. Gorter, ed.) (Progress in Low Temperature Physics), Volume 1, Elsevier, 1955, pp. 17-53 | DOI
[3] Critical Drift Velocity of Ions in Liquid Helium, Phys. Rev. Lett., Volume 7 (1961) no. 5, pp. 151-153 | DOI
[4] Evidence for The Creation and Motion of Quantized Vortex Rings in Superfluid Helium, Phys. Rev. Lett., Volume 11 (1963) no. 7, pp. 305-308 | DOI
[5] Observations on Single Vortex Lines in Rotating Superfluid Helium, Phys. Rev. A, Volume 6 (1972) no. 2, pp. 799-807 | DOI
[6] Observation of Stationary Vortex Arrays in Rotating Superfluid Helium, Phys. Rev. Lett., Volume 43 (1979) no. 3, pp. 214-217 | DOI
[7] Vortices in a Bose–Einstein condensate, Phys. Rev. Lett., Volume 83 (1999) no. 13, pp. 2498-2501 | DOI
[8] Vortex formation in a stirred Bose–Einstein condensate, Phys. Rev. Lett., Volume 84 (2000) no. 5, pp. 806-809 | DOI
[9] Observation of vortex lattices in Bose-Einstein condensates, Science, Volume 292 (2001) no. 5516, pp. 476-479 | DOI
[10] Observation of Tkachenko oscillations in rapidly rotating Bose–Einstein condensates, Phys. Rev. Lett., Volume 91 (2003) no. 10, 100402 | DOI
[11] Watching dark solitons decay into vortex rings in a Bose-Einstein condensate, Phys. Rev. Lett., Volume 86 (2001) no. 14, pp. 2926-2929 | DOI
[12] Cascade of Solitonic Excitations in a Superfluid Fermi gas: From Planar Solitons to Vortex Rings and Lines, Phys. Rev. Lett., Volume 116 (2016) no. 4, 045304 | DOI
[13] Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas, Nature, Volume 441 (2006) no. 7097, pp. 1118-1121 | DOI
[14] Vortex Formation by Merging of Multiple Trapped Bose–Einstein Condensates, Phys. Rev. Lett., Volume 98 (2007) no. 11, 110402 | DOI
[15] Relaxation Dynamics in the Merging of Independent Condensates, Phys. Rev. Lett., Volume 119 (2017) no. 19, 190403 | DOI
[16] Observation of solitonic vortices in Bose–Einstein condensates, Phys. Rev. Lett., Volume 113 (2014) no. 6, 065302 | DOI
[17] Quench-induced supercurrents in an annular Bose gas, Phys. Rev. Lett., Volume 113 (2014) no. 13, 135302 | DOI
[18] Synthetic magnetic fields for ultracold neutral atoms, Nature, Volume 462 (2009) no. 7273, pp. 628-632 | DOI
[19] Observation of vortex dipoles in an oblate Bose–Einstein condensate, Phys. Rev. Lett., Volume 104 (2010) no. 16, 160401 | DOI
[20] Relaxation of superfluid turbulence in highly oblate Bose–Einstein condensates, Phys. Rev. A, Volume 90 (2014) no. 6, 063627 | DOI
[21] Imprinting Persistent Currents in Tunable Fermionic Rings, Phys. Rev. X, Volume 12 (2022) no. 4, 041037 | DOI
[22] Driving Phase Slips in a Superfluid Atom Circuit with a Rotating Weak Link, Phys. Rev. Lett., Volume 110 (2013) no. 2, 025302 | DOI
[23] Driving Bose–Einstein-Condensate Vorticity with a Rotating Normal Cloud, Phys. Rev. Lett., Volume 87 (2001) no. 21, 210403 | DOI
[24] Nonequilibrium effects of anisotropic compression applied to vortex lattices in Bose–Einstein condensates, Phys. Rev. Lett., Volume 89 (2002) no. 10, 100403 | DOI
[25] Vortex-Lattice Dynamics in Rotating Spinor Bose–Einstein Condensates, Phys. Rev. Lett., Volume 93 (2004) no. 21, 210403 | DOI
[26] Chladni Solitons and the Onset of the Snaking Instability for Dark Solitons in Confined Superfluids, Phys. Rev. Lett., Volume 113 (2014) no. 25, 255302 | DOI
[27] Observation of self-patterned defect formation in atomic superfluids – from ring dark solitons to vortex dipole necklaces (2022) (preprint, arXiv:2211.08575) | DOI
[28] Observation of Thermally Activated Vortex Pairs in a Quasi-2D Bose Gas, Phys. Rev. Lett., Volume 110 (2013) no. 17, 175302 | DOI
[29] Vortex Proliferation in the Berezinskii–Kosterlitz–Thouless Regime on a Two-Dimensional Lattice of Bose–Einstein Condensates, Phys. Rev. Lett., Volume 99 (2007) no. 3, 030401 | DOI
[30] Observation of Interference Between Two Bose Condensates, Science, Volume 275 (1997) no. 5300, pp. 637-641 | DOI
[31] Interference of an Array of Independent Bose–Einstein Condensates, Phys. Rev. Lett., Volume 93 (2004) no. 18, 180403 | DOI
[32] Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate, Nature, Volume 443 (2006) no. 7109, pp. 312-315 | DOI
[33] Spontaneous vortices in the formation of Bose–Einstein condensates, Nature, Volume 455 (2008) no. 7215, pp. 948-951 | DOI
[34] Spontaneous creation of Kibble–Zurek solitons in a Bose–Einstein condensate, Nat. Phys., Volume 9 (2013) no. 10, pp. 656-660 | DOI
[36] Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas, Nat. Commun., Volume 6 (2015) no. 1, 6162 | DOI
[37] Creation and counting of defects in a temperature-quenched Bose–Einstein condensate, Phys. Rev. A, Volume 94 (2016) no. 2, 023628 | DOI
[38] Defect Saturation in a Rapidly Quenched Bose Gas, Phys. Rev. Lett., Volume 127 (2021) no. 11, 115701 | DOI
[39] Colloquium: Artificial gauge potentials for neutral atoms, Rev. Mod. Phys., Volume 83 (2011) no. 4, pp. 1523-1543 | DOI
[40] Geometric squeezing into the lowest Landau level, Science, Volume 372 (2021) no. 6548, pp. 1318-1322 | DOI | MR | Zbl
[41] Crystallization of bosonic quantum Hall states in a rotating quantum gas, Nature, Volume 601 (2022) no. 7891, pp. 58-62 | DOI
[42] Characteristics of two-dimensional quantum turbulence in a compressible superfluid, Phys. Rev. Lett., Volume 111 (2013) no. 23, 235301 | DOI
[43] Giant vortex clusters in a two-dimensional quantum fluid, Science, Volume 364 (2019) no. 6447, pp. 1264-1267 | DOI | MR | Zbl
[44] Sound emission and annihilations in a programmable quantum vortex collider, Nature, Volume 600 (2021) no. 7887, pp. 64-69 | DOI
[45] Emergence of Turbulence in an Oscillating Bose–Einstein Condensate, Phys. Rev. Lett., Volume 103 (2009) no. 4, 045301 | DOI
[47] Critical Spin Superflow in a Spinor Bose–Einstein Condensate, Phys. Rev. Lett., Volume 119 (2017) no. 18, 185302 | DOI
[48] Generating solitons by phase engineering of a Bose–Einstein condensate, Science, Volume 287 (2000), pp. 97-101 | DOI
[49] Producing superfluid circulation states using phase imprinting, Phys. Rev. A, Volume 97 (2018) no. 4, 043615 | DOI
[50] Persistent Currents in Spinor Condensates, Phys. Rev. Lett., Volume 110 (2013) no. 2, 025301 | DOI
[51] Strongly dipolar Bose–Einstein condensate of Dysprosium, Phys. Rev. Lett., Volume 107 (2011) no. 19, 190401 | DOI
[52] Bose–Einstein condensation of Erbium, Phys. Rev. Lett., Volume 108 (2012) no. 21, 210401 | DOI
[53] Developments in atomic control using ultracold magnetic lanthanides, Nat. Phys., Volume 17 (2021) no. 12, pp. 1349-1357 | DOI
[54] Dipolar physics: A review of experiments with magnetic quantum gases, Rep. Prog. Phys., Volume 86 (2022), 026401 | DOI
[55] Theory of the superfluidity of Helium II, Phys. Rev., Volume 60 (1941) no. 4, pp. 356-358 | DOI | Zbl
[56] Rotons in Gaseous Bose–Einstein Condensates Irradiated by a Laser, Phys. Rev. Lett., Volume 90 (2003) no. 11, 110402 | DOI
[57] Roton-Maxon Spectrum and Stability of Trapped Dipolar Bose–Einstein Condensates, Phys. Rev. Lett., Volume 90 (2003) no. 25, 250403 | DOI
[58] Observation of roton mode population in a dipolar quantum gas, Nat. Phys., Volume 14 (2018) no. 5, pp. 442-446 | DOI
[59] Probing the Roton Excitation Spectrum of a Stable Dipolar Bose Gas, Phys. Rev. Lett., Volume 122 (2019) no. 18, 183401 | DOI
[60] Density Fluctuations across the Superfluid-Supersolid Phase Transition in a Dipolar Quantum Gas, Phys. Rev. X, Volume 11 (2021) no. 1, 011037 | DOI
[61] Roton excitations in an oblate dipolar quantum gas, Phys. Rev. Lett., Volume 126 (2021) no. 19, 193002 | DOI
[62] Unified theory of interacting bosons, Phys. Rev., Volume 106 (1957) no. 1, pp. 161-162 | DOI | Zbl
[63] Transient supersolid properties in an array of dipolar quantum droplets, Phys. Rev. X, Volume 9 (2019) no. 1, 011051 | DOI
[64] Observation of a dipolar quantum gas with metastable supersolid properties, Phys. Rev. Lett., Volume 122 (2019) no. 13, 130405 | DOI
[65] Long-lived and transient supersolid behaviors in dipolar quantum gases, Phys. Rev. X, Volume 9 (2019) no. 2, 021012 | DOI
[66] Two-dimensional supersolidity in a dipolar quantum gas, Nature, Volume 596 (2021) no. 7872, pp. 357-361 | DOI
[67] Two-Dimensional Supersolid Formation in Dipolar Condensates, Phys. Rev. Lett., Volume 128 (2022) no. 19, 195302 | DOI
[68] Out-of-equilibrium quantum magnetism and thermalization in a spin-3 many-body dipolar lattice system, Nature Communications, Volume 10 (2019), p. 1714 | DOI
[69] Controlling dipolar exchange interactions in a dense three-dimensional array of large-spin fermions, Phys. Rev. Research, Volume 2 (2020) no. 2, 023050 | DOI
[70] Extended Bose–Hubbard models with ultracold magnetic atoms, Science, Volume 352 (2016) no. 6282, pp. 201-205 | DOI | MR | Zbl
[71] Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macrodroplet in a dipolar quantum fluid, Phys. Rev. X, Volume 6 (2016) no. 4, 041039 | DOI
[72] Observation of Quantum Droplets in a Strongly Dipolar Bose Gas, Phys. Rev. Lett., Volume 116 (2016) no. 21, 215301 | DOI
[73] Observing the Rosensweig instability of a quantum ferrofluid, Nature, Volume 530 (2016) no. 7589, pp. 194-197 | DOI
[74] Cold and ultracold molecules: Science, technology and applications, New J. Phys., Volume 11 (2009) no. 5, 055049 | DOI
[75] Self-bound dipolar droplets and supersolids in molecular Bose–Einstein condensates, Phys. Rev. Res., Volume 4 (2022) no. 1, 013235 | DOI
[76] Rydberg atom quantum technologies, J. Phys. B. At. Mol. Opt. Phys., Volume 53 (2019) no. 1, 012002 | DOI
[77] Supersolid formation in a quantum gas breaking a continuous translational symmetry, Nature, Volume 543 (2017) no. 7643, pp. 87-90 | DOI
[78] A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates, Nature, Volume 543 (2017) no. 7643, pp. 91-94 | DOI
[79] Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys., Volume 77 (2014) no. 12, 126401 | DOI
[80] An overview of magnetostriction, its use and methods to measure these properties, J. Mater. Process. Technol., Volume 191 (2007) no. 1-3, pp. 96-101 | DOI
[81] Vortex lattice formation in dipolar Bose–Einstein condensates via rotation of the polarization, Phys. Rev. A, Volume 100 (2019) no. 2, 023625 | DOI
[82] Observation of vortices and vortex stripes in a dipolar condensate, Nat. Phys., Volume 18 (2022) no. 12, pp. 1453-1458 | DOI
[83] Tuning the Dipolar Interaction in Quantum Gases, Phys. Rev. Lett., Volume 89 (2002) no. 13, 130401 | DOI
[84] Tuning the Dipole-Dipole Interaction in a Quantum Gas with a Rotating Magnetic Field, Phys. Rev. Lett., Volume 120 (2018) no. 23, 230401 | DOI
[85] Instability of rotationally tuned dipolar Bose–Einstein condensates, Phys. Rev. Lett., Volume 122 (2019) no. 5, 050401 | DOI
[86] Rotational tuning of the dipole-dipole interaction in a Bose gas of magnetic atoms, Phys. Rev. A, Volume 101 (2020) no. 4, 043606 | DOI
[87] Anisotropic Solitons in Dipolar Bose–Einstein Condensates, Phys. Rev. Lett., Volume 100 (2008) no. 9, 090406 | DOI
[88] Anisotropic vortex quantum droplets in dipolar Bose–Einstein condensates (2023) (preprint, arXiv:2301.04305) | DOI
[89] Vortices in self-bound dipolar droplets, Phys. Rev. A, Volume 98 (2018) no. 2, 023618 | DOI
[90] Excitations of a vortex line in an elongated dipolar condensate, Phys. Rev. A, Volume 98 (2018) no. 6, 063620 | DOI
[91] Vortices and vortex lattices in quantum ferrofluids, J. Phys. Cond. Matt., Volume 29 (2017) no. 10, 103004 | DOI
[92] Vortex structures in dipolar condensates, Phys. Rev. A, Volume 73 (2006) no. 6, 061602 | DOI
[93] Vortices in Bose–Einstein condensates with dominant dipolar interactions, Phys. Rev. A, Volume 79 (2009) no. 6, 063622 | DOI
[94] Anisotropic superfluidity in a dipolar Bose gas, Phys. Rev. Lett., Volume 106 (2011) no. 6, 065301 | DOI
[95] Anisotropic and long-range vortex interactions in two-dimensional dipolar Bose gases, Phys. Rev. Lett., Volume 111 (2013) no. 17, 170402 | DOI
[96] Vortices in the two-dimensional dipolar Bose gas, J. Phys. Conf. Ser., Volume 497 (2014), 012025 | DOI
[97] Manifestations of the Roton Mode in Dipolar Bose–Einstein Condensates, Phys. Rev. Lett., Volume 100 (2008) no. 24, 245302 | DOI
[98] Roton confinement in trapped dipolar Bose–Einstein condensates, Phys. Rev. A, Volume 88 (2013) no. 1, 013619 | DOI
[99] Anisotropic vortex squeezing in synthetic Rashba superconductors: a manifestation of Lifshitz invariants, Phys. Rev. X, Volume 12 (2022) no. 4, 041020 | DOI
[100] Vortex reconnections and rebounds in trapped atomic Bose–Einstein condensates, Phys. Rev. X, Volume 7 (2017) no. 2, 021031 | DOI
[101] Dynamics of the corotating vortices in dipolar Bose–Einstein condensates in the presence of dissipation, J. Phys. B. At. Mol. Opt. Phys., Volume 47 (2014) no. 16, 165301 | DOI
[102] Vortex lattices in rotating atomic Bose gases with dipolar interactions, Phys. Rev. Lett., Volume 95 (2005) no. 20, 200402 | DOI
[103] Vortex Lattices in Planar Bose–Einstein Condensates with Dipolar Interactions, Phys. Rev. Lett., Volume 95 (2005) no. 20, 200403 | DOI
[104] Three-dimensional vortex structures in a rotating dipolar Bose–Einstein condensate, J. Phys. B. At. Mol. Opt. Phys., Volume 49 (2016) no. 15, 155301 | DOI
[105] Vortex patterns and the critical rotational frequency in rotating dipolar Bose–Einstein condensates, Phys. Rev. A, Volume 98 (2018) no. 2, 023610 | DOI
[106] Quantum ferrofluid turbulence, Phys. Rev. Lett., Volume 121 (2018) no. 17, 174501 | DOI
[107] Arbitrary-angle rotation of the polarization of a dipolar Bose–Einstein condensate, Phys. Rev. A, Volume 103 (2021) no. 3, 033322 | DOI | MR
[108] Rotating a supersolid dipolar gas, Phys. Rev. Lett., Volume 124 (2020) no. 4, 045702 | DOI
[109] Quantized vortices in dipolar supersolid Bose–Einstein-condensed gases, Phys. Rev. A, Volume 102 (2020) no. 2, 023322 | DOI
[110] Vortex properties in the extended supersolid phase of dipolar Bose–Einstein condensates, Phys. Rev. A, Volume 103 (2021) no. 3, 033314 | DOI
[111] Creation and robustness of quantized vortices in a dipolar supersolid when crossing the superfluid-to-supersolid transition, Phys. Rev. A, Volume 106 (2022) no. 6, L061303 | DOI
[112] Superfluid properties of a honeycomb dipolar supersolid, Phys. Rev. A, Volume 106 (2022) no. 6, 063301 | DOI
[113] Quantum filaments in dipolar Bose–Einstein condensates, Phys. Rev. A, Volume 93 (2016) no. 6, 061603 | DOI
[114] Ground-state phase diagram of a dipolar condensate with quantum fluctuations, Phys. Rev. A, Volume 94 (2016) no. 3, 033619 | DOI
[115] Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties, Phys. Rev., Volume 106 (1957) no. 6, pp. 1135-1145 | DOI | MR | Zbl
[116] Mean-field expansion in Bose–Einstein condensates with finite-range interactions, International Journal of Modern Physics B, Volume 20 (2006) no. 24, pp. 3555-3565 | DOI | Zbl
[117] Quantum fluctuations in dipolar Bose gases, Phys. Rev. A, Volume 84 (2011) no. 4, 041604 | DOI
[118] Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques, Adv. Phys., Volume 57 (2008) no. 5, pp. 363-455 | DOI
[119] Bogoliubov modes of a dipolar condensate in a cylindrical trap, Phys. Rev. A, Volume 74 (2006) no. 1, 013623 | DOI
[120] Overcritical rotation of a trapped Bose–Einstein condensate, Phys. Rev. Lett., Volume 86 (2001) no. 3, pp. 377-380 | DOI
[121] Dynamic instability of a rotating Bose–Einstein condensate, Phys. Rev. Lett., Volume 87 (2001) no. 19, 190402 | DOI
[122] Vortex Nucleation in Bose–Einstein Condensates in an Oblate, Purely Magnetic Potential, Phys. Rev. Lett., Volume 88 (2001) no. 1, 010405 | DOI
[123] Exact solution of the Thomas–Fermi equation for a trapped Bose–Einstein condensate with dipole-dipole interactions, Phys. Rev. A, Volume 71 (2005) no. 3, 033618 | DOI
[124] Collective excitation frequencies and stationary states of trapped dipolar Bose–Einstein condensates in the Thomas–Fermi regime, Phys. Rev. A, Volume 82 (2010) no. 3, 033612 | DOI
[125] Dynamical Instability of a Rotating Dipolar Bose–Einstein Condensate, Phys. Rev. Lett., Volume 98 (2007) no. 15, 150401 | DOI
[126] Instabilities and vortex-lattice formation in rotating conventional and dipolar dilute-gas Bose–Einstein condensates, Laser Phys., Volume 18 (2008) no. 3, pp. 322-330 | DOI
[127] Exact solutions and stability of rotating dipolar Bose–Einstein condensates in the Thomas-Fermi limit, Phys. Rev. A, Volume 80 (2009) no. 3, 033617 | DOI
[128] Stationary states, dynamical stability, and vorticity of Bose–Einstein condensates in tilted rotating harmonic traps, Phys. Rev. A, Volume 101 (2020) no. 6, 063608 | DOI | MR
[129] Optical Visibility and Core Structure of Vortex Filaments in a Bosonic Superfluid, J. Exp. Theor. Phys., Volume 127 (2018) no. 5, pp. 804-811 | DOI
[130] Persistent currents in toroidal dipolar supersolids, Phys. Rev. A, Volume 103 (2021) no. 1, 013313 | DOI
[131] Toroidal dipolar supersolid with a rotating weak link, Phys. Rev. A, Volume 107 (2023) no. 6, 063316 | DOI | MR
[132] Supersolid-like square- and honeycomb-lattice crystallization of droplets in a dipolar condensate, Phys. Rev. A, Volume 105 (2022) no. 3, 033311 | DOI
[133] Supersolidity around a Critical Point in Dipolar Bose–Einstein Condensates, Science, Volume 123 (2019) no. 1, 015301 | DOI
[134] Phases of supersolids in confined dipolar Bose–Einstein condensates, Phys. Rev. A, Volume 104 (2021) no. 1, 013310 | DOI | MR
[135] Pattern formation in quantum ferrofluids: From supersolids to superglasses, Phys. Rev. Res., Volume 3 (2021) no. 3, 033125 | DOI
[136] Dipolar Quantum Mixtures of Erbium and Dysprosium Atoms, Phys. Rev. Lett., Volume 121 (2018) no. 21, 213601 | DOI
[137] Production of a degenerate Fermi–Fermi mixture of dysprosium and potassium atoms, Phys. Rev. A, Volume 98 (2018) no. 6, 063624 | DOI
[138] Realization of a quantum degenerate mixture of highly-magnetic and nonmagnetic atoms (2023) (preprint, arXiv:2301.08890)
[139] Exotic vortex lattices in a rotating binary dipolar Bose–Einstein condensate, Sci. Rep., Volume 6 (2016) no. 1, 19680 | DOI
[140] Vortex lattices in binary Bose–Einstein condensates with dipole-dipole interactions, Phys. Rev. A, Volume 96 (2017) no. 6, 063624 | DOI
[141] Vortex patterns in rotating dipolar Bose–Einstein condensate mixtures with squared optical lattices, J. Phys. B. At. Mol. Opt. Phys., Volume 52 (2018) no. 2, 025302 | DOI
[142] Spatial separation of rotating binary Bose–Einstein condensates by tuning the dipolar interactions, Phys. Rev. A, Volume 99 (2019) no. 4, 043606 | DOI
[143] Dipolar condensed atomic mixtures and miscibility under rotation, SciPost Physics Proceedings, Volume 3 (2020), 023 | DOI
[144] Long-lifetime supersolid in a two-component dipolar Bose–Einstein condensate, Phys. Rev. A, Volume 105 (2022) no. 6, L061302 | DOI
[145] Alternating-domain supersolids in binary dipolar condensates, Phys. Rev. A, Volume 106 (2022) no. 5, 053322 | DOI
[146] Catalyzation of supersolidity in binary dipolar condensates, Phys. Rev. A, Volume 107 (2023) no. 2, L021302 | DOI
[147] Visualization of quantized vortices, Nature, Volume 441 (2006) no. 7093, p. 588-588 | DOI
[148] Vortex precession in Bose–Einstein condensates: Observations with filled and empty cores, Phys. Rev. Lett., Volume 85 (2000) no. 14, pp. 2857-2860 | DOI
[149] Evidence of superfluidity in a dipolar supersolid from nonclassical rotational inertia, Science, Volume 371 (2021) no. 6534, pp. 1162-1165 | DOI | MR | Zbl
[150] Can Angular Oscillations Probe Superfluidity in Dipolar Supersolids?, Phys. Rev. Lett., Volume 129 (2022) no. 4, 040403 | DOI
[151] Moment of inertia and dynamical rotational response of a supersolid dipolar gas, Phys. Rev. A, Volume 105 (2022) no. 2, 023316 | DOI
[152] Bose–Einstein Condensation, Cambridge University Press, 1995 | DOI
[153] Topology of cosmic domains and strings, J. Phys. A. Math. Gen., Volume 9 (1976) no. 8, 1387 | DOI | Zbl
[154] Cosmological experiments in superfluid liquid helium?, Nature, Volume 317 (1985), pp. 505-508 | DOI
[155] Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. ii. quantum systems, Sov. Phys. JETP, Volume 34 (1972), pp. 610-616
[156] Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C. Solid State Phys., Volume 6 (1973) no. 7, 1181 | DOI
Cité par Sources :
Commentaires - Politique