Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Photochemical model output data associated with: How to identify exoplanet surfaces using atmospheric trace species in hydrogen-dominated atmospheres

Data files

May 07, 2021 version files 1.58 MB

Abstract

Sub-Neptunes (Rp~1.25-4 REarth) remain the most commonly detected exoplanets to date. However, it remains difficult for observations to tell whether these intermediate-sized exoplanets have surfaces and where their surfaces are located. Here we propose that the abundances of trace species in the visible atmospheres of these sub-Neptunes can be used as proxies for determining the existence of surfaces and approximate surface conditions. As an example, we used a state-of-the-art photochemical model to simulate the atmospheric evolution of K2-18b and investigate its final steady-state composition with surfaces located at different pressures levels (Psurf). We find the surface location has a significant impact on the atmospheric abundances of trace species, making them deviate significantly from their thermochemical equilibrium and “no-surface” conditions. This result arises primarily because the pressure-temperature conditions at the surface determine whether photochemically-produced species can be recycled back to their favored thermochemical-equilibrium forms and transported back to the upper atmosphere. For an assumed H2-rich atmosphere for K2-18b, we identify seven chemical species that are most sensitive to the existence of surfaces: ammonia (NH3), methane (CH4), hydrogen cyanide (HCN), acetylene (C2H2), ethane (C2H6), carbon monoxide (CO), and carbon dioxide (CO2). The ratio between the observed and the no-surface abundances of these species, can help distinguish the existence of a shallow surface (Psurf < 10 bar), an intermediate surface (10 bar < Psurf < 100 bar), and a deep surface (Psurf > 100 bar). This framework can be applied together with future observations to other sub-Neptunes of interest.