引用本文: |
Citation: |
超薄柔性透射型超构材料吸收器
Ultrathin flexible transmission metamaterial absorber
-
As an important branch of metamaterial-based devices, metamaterial absorber (MA) has aroused great interest and made great progress in the past several years. By manipulating the magnetic resonance and the electric resonance simultaneously, the effective impedance of MA will match the free space impedance, thus resulting in a perfect absorption of incident waves. Due to the advantages of thin thickness, high efficiency and tunable property, MA has been widely concerned in energy-harvesting and electromagnetic stealth. Since the first demonstration of MA in 2008, many MAs have been extensively studied in different regions, such as microwave frequency, THz, infrared frequency and optical frequency. At the same time, the absorber has been extended from the single-band to the dual-band, triple-band, multiple-band and broadband. In recent years, the dual-band absorber has received significant attention and has been widely studied. So far, however, most of MAs are composed of a bottom continuous metallic layer, which prevents electromagnetic waves from penetrating and makes electromagnetic waves absorbed or reflected. In this paper, an ultrathin flexible transmission absorber with a total thickness of 0.288 mm is designed and fabricated, which can be conformally integrated on an object with a curved surface. The absorber consists of three layers of structure: the bottom is a one-dimensional grating type metal line, the middle is the medium layer, and the surface metal layer is composed of two different sizes metal lines in parallel. Simulation and experimental results show that the absorptions of TE wave are 97.5% and 96.0% respectively at the two frequency points of 5 GHz and 7 GHz. The transmission of the TM wave above 90% is maintained from 3 GHz to 6.5 GHz. We also simulate the spatial electric field distribution and magnetic field distribution at two resonant frequencies, and explain the electromagnetic absorption mechanism of the proposed structure for TE wave. Secondly, when the incident angle increases to 60 degrees, the performance of the absorber is substantially unaffected, exhibiting good wide-angle characteristics. In addition, through the analysis of structural parameters, two absorption peaks of the proposed absorber can be independently adjusted, resulting in a flexible design. In conclusion, we propose both theoretically and experimentally a polarization-controlled transmission-type dual-band metamaterial absorber that can absorb the TE waves and transmit the TM wave efficiently, which has important applications in the case requiring bidirectional communication.
-
Keywords:
- metamaterial absorber /
- ultrathin flexibility /
- dual-band absorption /
- efficient transmission
[1] Almoneef T S, Ramahi O M 2015 Appl. Phys. Lett. 106 153902
Google Scholar
[2] Ishikawa A, Tanaka T 2015 Sci. Rep. 5 12570
Google Scholar
[3] Xie Y, Fan X, Chen Y, Wilson J, Simons R N, Xiao J 2017 Sci. Rep. 7 40490
Google Scholar
[4] Liu X, Tyler T, Starr T, Starr A F, Jokerst N M, Padilla W J 2011 Phys. Rev. Lett. 107 045901
Google Scholar
[5] Li W, Valentine J 2014 Nano Lett. 14 3510
Google Scholar
[6] 马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚 2017 物理学报 66 147802
Google Scholar
Ma X L, Li X, Guo Y H, Zhao Z Y, Luo X G 2017 Acta Phys. Sin. 66 147802
Google Scholar
[7] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402
Google Scholar
[8] Khuyen B X, Tung B S, Yoo Y J, Kim Y J, Lam V D, Yang J, Lee Y 2016 Curr. Appl. Phys. 16 1009
Google Scholar
[9] Khuyen B X, Tung B S, Yoo Y J, Kim Y J, Kim K W, Chen L, Lam V D, Lee Y 2017 Sci. Rep. 7 45151
Google Scholar
[10] Ding F, Cui Y, Ge X, Jin Y, He S 2012 Appl. Phys. Lett. 100 103506
Google Scholar
[11] Zhang Y, Duan J, Zhang B, Zhang W, Wang W 2017 J. Alloys Compd. 705 262
Google Scholar
[12] Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103
Google Scholar
[13] Wang W, Wang K, Yang Z, Liu J 2017 J. Phys. D: Appl. Phys. 50 135108
Google Scholar
[14] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云 2015 物理学报 64 117801
Google Scholar
Zhang Y P, Li T T, Lü H H, Huang X Y, Zhang H Y 2015 Acta Phys. Sin. 64 117801
Google Scholar
[15] Chen J, Li J, Liu Q H 2017 IEEE Trans. Microwave Theory Tech. 65 3689
Google Scholar
[16] Chen J, Li J, Liu Q H 2017 IEEE Trans. Microwave Theory Tech. 65 1896
[17] Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett 104 207403
Google Scholar
[18] Hasan D, Pitchappa P, Wang J, Wang T, Yang B, Ho C P, Lee C 2017 ACS Photonics 4 302
Google Scholar
[19] Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett 96 251104
Google Scholar
[20] Wang W, Qu Y, Du K, Bai S, Tian J, Pan M, Ye H, Qiu M, Li Q 2017 Appl. Phys. Lett 110 101101
Google Scholar
[21] Wen Q, Zhang H, Xie Y, Yang Q, Liu Y 2009 Appl. Phys. Lett. 95 241111
Google Scholar
[22] Xu H, Wang G, Qi M, Liang J, Gong J, Xu Z 2012 Phys. Rev. B 86 205104
Google Scholar
[23] Wang B, Wang G, Sang T, Wang L 2017 Sci. Rep 7 41373
Google Scholar
[24] Xie J, Zhu W, Rukhlenko I D, Xiao F, He C, Geng J, Liang X, Jin R, Premaratne M 2018 Opt. Express 26 5052
Google Scholar
[25] Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R S 2011 Opt. Lett 36 945
Google Scholar
[26] Chen K, Adato R, Altug H 2012 ACS Nano 6 7998
Google Scholar
[27] Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102
Google Scholar
[28] Singh P K, Korolev K A, Afsar M N, Sonkusale S 2011 Appl. Phys. Lett. 99 264101
Google Scholar
[29] Feng R, Ding W Q, Liu L H, Chen L X, Qiu J, Chen G Q 2014 Opt. Express 22 A335
Google Scholar
[30] Liu X, Lan C, Li B, Zhao Q, Zhou J 2016 Sci. Rep. 6 28906
Google Scholar
[31] Tung B S, Khuyen B X, Kim Y J, Lam V D, Kim K W, Lee Y 2017 Sci. Rep. 7 11507
Google Scholar
[32] Yoo Y J, Kim Y J, Tuong P V, Rhee J Y, Kim K W, Jang W H, Kim Y H, Cheong H, Lee Y 2013 Opt. Express 21 32484
Google Scholar
[33] Yue W, Wang Z, Yang Y, Han J, Li J, Guo Z, Tan H, Zhang X 2016 Plasmonics 11 1557
Google Scholar
[34] Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342
Google Scholar
-
图 4 (a) TM波随入射角度变化的透射谱, 插图为弯曲的加工样品覆盖在圆柱形物体表面; (b) TE波随入射角度变化的吸收谱
Fig. 4. (a) Transmission spectra for TM wave with the change of incident angle, the inset shows the curved sample covered on the surface of a cylindrical object; (b) the absorption spectra for TE wave with the change of incident angle.
[1] |
Almoneef T S, Ramahi O M 2015 Appl. Phys. Lett. 106 153902 |
[2] |
Ishikawa A, Tanaka T 2015 Sci. Rep. 5 12570 |
[3] |
Xie Y, Fan X, Chen Y, Wilson J, Simons R N, Xiao J 2017 Sci. Rep. 7 40490 |
[4] |
Liu X, Tyler T, Starr T, Starr A F, Jokerst N M, Padilla W J 2011 Phys. Rev. Lett. 107 045901 |
[5] |
Li W, Valentine J 2014 Nano Lett. 14 3510 |
[6] |
马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚 2017 物理学报 66 147802 Ma X L, Li X, Guo Y H, Zhao Z Y, Luo X G 2017 Acta Phys. Sin. 66 147802 |
[7] |
Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402 |
[8] |
Khuyen B X, Tung B S, Yoo Y J, Kim Y J, Lam V D, Yang J, Lee Y 2016 Curr. Appl. Phys. 16 1009 |
[9] |
Khuyen B X, Tung B S, Yoo Y J, Kim Y J, Kim K W, Chen L, Lam V D, Lee Y 2017 Sci. Rep. 7 45151 |
[10] |
Ding F, Cui Y, Ge X, Jin Y, He S 2012 Appl. Phys. Lett. 100 103506 |
[11] |
Zhang Y, Duan J, Zhang B, Zhang W, Wang W 2017 J. Alloys Compd. 705 262 |
[12] |
Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103 |
[13] |
Wang W, Wang K, Yang Z, Liu J 2017 J. Phys. D: Appl. Phys. 50 135108 |
[14] |
张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云 2015 物理学报 64 117801 Zhang Y P, Li T T, Lü H H, Huang X Y, Zhang H Y 2015 Acta Phys. Sin. 64 117801 |
[15] |
Chen J, Li J, Liu Q H 2017 IEEE Trans. Microwave Theory Tech. 65 3689 |
[16] |
Chen J, Li J, Liu Q H 2017 IEEE Trans. Microwave Theory Tech. 65 1896 |
[17] |
Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett 104 207403 |
[18] |
Hasan D, Pitchappa P, Wang J, Wang T, Yang B, Ho C P, Lee C 2017 ACS Photonics 4 302 |
[19] |
Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett 96 251104 |
[20] |
Wang W, Qu Y, Du K, Bai S, Tian J, Pan M, Ye H, Qiu M, Li Q 2017 Appl. Phys. Lett 110 101101 |
[21] |
Wen Q, Zhang H, Xie Y, Yang Q, Liu Y 2009 Appl. Phys. Lett. 95 241111 |
[22] |
Xu H, Wang G, Qi M, Liang J, Gong J, Xu Z 2012 Phys. Rev. B 86 205104 |
[23] |
Wang B, Wang G, Sang T, Wang L 2017 Sci. Rep 7 41373 |
[24] |
Xie J, Zhu W, Rukhlenko I D, Xiao F, He C, Geng J, Liang X, Jin R, Premaratne M 2018 Opt. Express 26 5052 |
[25] |
Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R S 2011 Opt. Lett 36 945 |
[26] |
Chen K, Adato R, Altug H 2012 ACS Nano 6 7998 |
[27] |
Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102 |
[28] |
Singh P K, Korolev K A, Afsar M N, Sonkusale S 2011 Appl. Phys. Lett. 99 264101 |
[29] |
Feng R, Ding W Q, Liu L H, Chen L X, Qiu J, Chen G Q 2014 Opt. Express 22 A335 |
[30] |
Liu X, Lan C, Li B, Zhao Q, Zhou J 2016 Sci. Rep. 6 28906 |
[31] |
Tung B S, Khuyen B X, Kim Y J, Lam V D, Kim K W, Lee Y 2017 Sci. Rep. 7 11507 |
[32] |
Yoo Y J, Kim Y J, Tuong P V, Rhee J Y, Kim K W, Jang W H, Kim Y H, Cheong H, Lee Y 2013 Opt. Express 21 32484 |
[33] |
Yue W, Wang Z, Yang Y, Han J, Li J, Guo Z, Tan H, Zhang X 2016 Plasmonics 11 1557 |
[34] |
Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342 |
[1] | 王玉蓉, 屈薇薇, 李桂琳, 邓琥, 尚丽平. 一种基于多目标粒子群算法的太赫兹超材料吸收器快速优化方法. 物理学报, 2025, 74(5): 057801. doi: 10.7498/aps.74.20241684 |
[2] | 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态. 物理学报, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801 |
[3] | 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器. 物理学报, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975 |
[4] | 江孝伟, 武华. 吸收波长和吸收效率可控的超材料吸收器. 物理学报, 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173 |
[5] | 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器. 物理学报, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216 |
[6] | 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器. 物理学报, 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908 |
[7] | 杨鹏, 韩天成. 极化控制的双波段宽带红外吸收器研究. 物理学报, 2018, 67(10): 107801. doi: 10.7498/aps.67.20172716 |
[8] | 庄亚强, 王光明, 张晨新, 张小宽, 宗彬锋, 马卫东, 王亚伟. 单层高效透射型相位梯度超表面的设计及实验验证. 物理学报, 2016, 65(15): 154101. doi: 10.7498/aps.65.154101 |
[9] | 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101 |
[10] | 刘海文, 朱爽爽, 文品, 覃凤, 任宝平, 肖湘, 侯新宇. 基于发卡式开口谐振环的柔性双频带超材料. 物理学报, 2015, 64(3): 038101. doi: 10.7498/aps.64.038101 |
[11] | 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体. 物理学报, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103 |
[12] | 马岩冰, 张怀武, 李元勋. 基于科赫分形的新型超材料双频吸收器. 物理学报, 2014, 63(11): 118102. doi: 10.7498/aps.63.118102 |
[13] | 莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武. 基于圆台结构的超宽带极化不敏感太赫兹吸收器. 物理学报, 2013, 62(23): 237801. doi: 10.7498/aps.62.237801 |
[14] | 鲁磊, 屈绍波, 马华, 余斐, 夏颂, 徐卓, 柏鹏. 基于电磁谐振的极化无关透射吸收超材料吸波体. 物理学报, 2013, 62(10): 104102. doi: 10.7498/aps.62.104102 |
[15] | 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器. 物理学报, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102 |
[16] | 苏斌, 龚伯仪, 赵晓鹏. 树叶状红外频段完美吸收器的仿真设计. 物理学报, 2012, 61(14): 144203. doi: 10.7498/aps.61.144203 |
[17] | 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器. 物理学报, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101 |
[18] | 樊京, 蔡广宇. 一种基于金属开口谐振环和杆阵列的左手材料宽带吸收器. 物理学报, 2010, 59(9): 6084-6088. doi: 10.7498/aps.59.6084 |
[19] | 保石, 罗春荣, 张燕萍, 赵晓鹏. 基于树枝结构单元的超材料宽带微波吸收器. 物理学报, 2010, 59(5): 3187-3191. doi: 10.7498/aps.59.3187 |
[20] | 张燕萍, 赵晓鹏, 保石, 罗春荣. 基于阻抗匹配条件的树枝状超材料吸收器. 物理学报, 2010, 59(9): 6078-6083. doi: 10.7498/aps.59.6078 |
计量
- 文章访问数: 8147
- PDF下载量: 177
- 被引次数: 0