Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Theoretical development and critical analysis of burst frequency equations for passive valves on centrifugal microfluidic platforms

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This paper presents a theoretical development and critical analysis of the burst frequency equations for capillary valves on a microfluidic compact disc (CD) platform. This analysis includes background on passive capillary valves and the governing models/equations that have been developed to date. The implicit assumptions and limitations of these models are discussed. The fluid meniscus dynamics before bursting is broken up into a multi-stage model and a more accurate version of the burst frequency equation for the capillary valves is proposed. The modified equations are used to evaluate the effects of various CD design parameters such as the hydraulic diameter, the height to width aspect ratio, and the opening wedge angle of the channel on the burst pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. It should be noted that for the rectangular cross-section we termed the smaller side of the channel “the width”.

References

  1. Abi-Samra K, Hanson R, Madou M, Gorkin RA III (2011) Infrared controlled waxes for liquid handling and storage on a CD-microfluidic platform. Lab Chip 11:723–726

    Article  PubMed  CAS  Google Scholar 

  2. Amasia M, Cozzens M, Madou MJ (2012) Centrifugal microfluidic platform for rapid PCR amplification using integrated thermoelectric heating and ice-valving. Sens Actuator B Chem 161:1191–1197

    Article  CAS  Google Scholar 

  3. Andersson H, Van der Wijngaart W, Griss P, Niklaus F, Stemme G (2001) Hydrophobic valves of plasma deposited octafluorocyclobutane in DRIE channels. Sens Actuator B Chem 75:136–141

    Article  Google Scholar 

  4. Chen JM, Huang PC, Lin MG (2008) Analysis and experiment of capillary valves for microfluidics on a rotating disk. Microfluid Nanofluid 4:427–437

    Article  Google Scholar 

  5. Chen QL, Cheung KL, Kong SK, Zhou JQ, Kwan YW, Wong CK, Ho HP (2012) An integrated lab-on-a-disc for automated cell-based allergen screening bioassays. Talanta 97:48–54

    Article  PubMed  CAS  Google Scholar 

  6. Chew M, Teo W, Xie L, Premachandran CS, Wong WH, Xu D, Yao Q (2006) Study of a capillary force driven passive valve for a microfluidic package. In: Proceedings of the 8th electronics packaging technology conference 2006, EPTC '06, Singapore. Institute of Electrical and Electronics Engineers (IEEE), pp 448–453. doi:10.1109/EPTC.2006.342756

  7. Cho H, Kim HY, Kang JY, Kim TS (2004) Capillary passive valve in microfluidic systems. In: Technical proceedings of the 2004 NSTI nanotechnology conference and trade show—NSTI Nanotech 2004, Boston, Massachusetts. Nano Science and Technology Institute (NSTI), vol 1. pp 263–266

  8. Cho H, Kim HY, Kang JY, Kim TS (2007) How the capillary burst microvalve works. J Colloid Interface Sci 306:379–385

    Article  PubMed  CAS  Google Scholar 

  9. Ducrée J, Haeberle S, Lutz S, Pausch S, Von Stetten F, Zengerle R (2007) The centrifugal microfluidic bio-disk platform. J Micromech Microeng 17:S103–S115

    Article  Google Scholar 

  10. Duffy DC, Gillis HL, Lin J, Sheppard NF Jr, Kellogg GJ (1999) Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays. Anal Chem 71:4669–4678

    Article  CAS  Google Scholar 

  11. Glière A, Delattre C (2006) Modeling and fabrication of capillary stop valves for planar microfluidic systems. Sens Actuator A 130–131:601–608

    Article  Google Scholar 

  12. Gorkin R, Nwankire CE, Gaughran J, Zhang X, Donohoe GG, Rook M, O’Kennedy R, Ducrée J (2012) Centrifugo-pneumatic valving utilizing dissolvable films. Lab Chip 12:2894–2902

    Article  PubMed  CAS  Google Scholar 

  13. Gorkin R, Soroori S, Southard W, Clime L, Veres T, Kido H, Kulinsky L, Madou M (2012) Suction-enhanced siphon valves for centrifugal microfluidic platforms. Microfluid Nanofluid 12:345–354

    Article  Google Scholar 

  14. He H, Yuan Y, Wang W, Chiou Nan-Rong NR, Epstein AJ, Lee LJ (2009) Design and testing of a microfluidic biochip for cytokine enzyme-linked immunosorbent assay. Biomicrofluidics 3:022401

    Article  Google Scholar 

  15. Ibrahim F, Nozari AA, Jahanshahi P, Soin N, Rahman NA, Dawal SZM, Kahar MKBA, Samra KA, and Madou M (2010) Analysis and experiment of centrifugal force for microfluidic ELISA CD platform. In: Biomedical engineering and sciences (IECBES), 2010 IEEE EMBS conference on, pp 466–470

  16. Kim J, Kido H, Rangel RH, Madou MJ (2008) Passive flow switching valves on a centrifugal microfluidic platform. Sens Actuator B Chem 128:613–621

    Article  Google Scholar 

  17. Lai S, Wang S, Luo J, Lee LJ, Yang ST, Madou MJ (2004) Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal Chem 76:1832–1837

    Article  PubMed  CAS  Google Scholar 

  18. Lee BS, Lee JN, Park JM, Lee JG, Kim S, Cho YK, Ko C (2009) A fully automated immunoassay from whole blood on a disc. Lab Chip 9:1548–1555

    Article  PubMed  CAS  Google Scholar 

  19. Leu TS, Chang PY (2004) Pressure barrier of capillary stop valves in micro sample separators. Sens Actuator A 115:508–515

    Article  Google Scholar 

  20. Li G, Chen Q, Li J, Hu X, Zhao J (2010) A compact disk-like centrifugal microfluidic system for high-throughput nanoliter-scale protein crystallization screening. Anal Chem 82:4362–4369

    Article  PubMed  CAS  Google Scholar 

  21. Lin SIE (2011) Parametric analysis of a novel semi-circular microfluidic CD-ELISA valve. J Biol Eng 5:1–13

    Article  CAS  Google Scholar 

  22. Lu C, Xie Y, Yang Y, Cheng MMC, Koh CG, Bai Y, Lee LJ, Juang YJ (2007) New valve and bonding designs for microfluidic biochips containing proteins. Anal Chem 79:994–1001

    Article  PubMed  CAS  Google Scholar 

  23. Madou M, Zoval J, Jia G, Kido H, Kim J, Kim N (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628

    Article  PubMed  CAS  Google Scholar 

  24. Man PF, Mastrangelo CH, Burns MA, Burke DT (1998) Microfabricated capillarity-driven stop valve and sample injector. In: Proceedings of the eleventh annual international workshop on micro electro mechanical systems 1998, MEMS 98, Heidelberg, Germany. Institute of Electrical and Electronics Engineers (IEEE), pp 45–50. doi:10.1109/MEMSYS.1998.659727

  25. Messinger RJ (2006) Microfluidics: mathematical modeling and empirical analysis of the burst frequencies of a novel fishbone capillary valve and the development of an algorithm to calculate its hold time. Honor thesis, Ohio State University, Columbus

  26. Peyman J, Nozari AA, Soin N, Ibrahim F (2009) Evaluation of pressure changes for capillary and fishbone valves in lab-on-CD systems. In: Proceedings of international conference for technical postgraduates (TECHPOS) 2009, Kuala Lumpur. Institute of Electrical and Electronics Engineers (IEEE), pp 1–5. doi:10.1109/TECHPOS.2009.5412057

  27. Pitchaimani K, Sapp BC, Winter A, Gispanski A, Nishida T, Hugh Fan Z (2009) Manufacturable plastic microfluidic valves using thermal actuation. Lab Chip 9:3082–3087

    Article  PubMed  CAS  Google Scholar 

  28. Thio T, Nozari AA, Soin N, Kahar MKBA, Dawal SZM, Samra KA, Madou M, Ibrahim F (2011) Hybrid capillary-flap valve for vapor control in point-of-care microfluidic CD. In: Osman N, Abas W, Wahab A, Ting H-N (eds) 5th Kuala Lumpur international conference on biomedical engineering 2011, vol 35. Springer, Heidelberg, pp 578–581

  29. Yusoff NA, Soin N, Ibrahim F (2009) Lab-on-a-disk as a potential microfluidic platform for dengue NS1-ELISA. In: Proceedings of IEEE symposium on industrial electronics & applications (ISIEA) 2009, Kuala Lumpur. Institute of Electrical and Electronics Engineers (IEEE), pp 946–950. doi:10.1109/ISIEA.2009.5356330

  30. Zeng J, Banerjee D, Deshpande M, Gilbert JR, Duffy DC, Kellogg GJ (2000) Design analyses of capillary burst valves in centrifugal microfluidics. In: micro total analysis systems 2000. In: Proceedings of the uTAS 2000 symposium, Enschede, The Netherlands, pp 579–582

  31. Zeng J, Deshpande M, Greiner KB, Gilbert JR (2000) Fluidic capacitance model of capillary-driven stop valves. In: MEMS proceedings 2000 ASME international mechanical engineering congress and exposition (IMECE’00), Orlando

  32. Zoval JV, Madou MJ (2004) Centrifuge-based fluidic platforms. Proc IEEE 92:140–153

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is financially supported by University of Malaya, Ministry of Higher Education High Impact Research (UM/HIR/MOHE/ENG/05), and University of Malaya Research Grant (UMRG: RG023/09AET).

The first author would like to thank Chua Huang Shen for participating in the initial study of the mathematical models, and Chung Wei Ning, Tiffany for the compilation of the various mathematical models from the literature.

MM, SS and LK would like to acknowledge support of the National Institute of Health (grant 1 R01 AI089541-01). MM also acknowledges support of WCU (World Class University) program (R32-2008-000-20054-0) through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatimah Ibrahim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 822 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thio, T.H.G., Soroori, S., Ibrahim, F. et al. Theoretical development and critical analysis of burst frequency equations for passive valves on centrifugal microfluidic platforms. Med Biol Eng Comput 51, 525–535 (2013). https://doi.org/10.1007/s11517-012-1020-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-1020-7

Keywords