Abstract
To understand complex biological systems requires the integration of experimental and computational research â in other words a systems biology approach. Computational biology, through pragmatic modelling and theoretical exploration, provides a powerful foundation from which to address critical scientific questions head-on. The reviews in this Insight cover many different aspects of this energetic field, although all, in one way or another, illuminate the functioning of modular circuits, including their robustness, design and manipulation. Computational systems biology addresses questions fundamental to our understanding of life, yet progress here will lead to practical innovations in medicine, drug discovery and engineering.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Analysis of sports records evolution and limits based on integrated features
Scientific Reports Open Access 24 June 2024
-
Systems biology approaches to identify driver genes and drug combinations for treating COVID-19
Scientific Reports Open Access 26 January 2024
-
Information-Theoretic Analysis of a Model of CAR-4-1BB-Mediated NFκB Activation
Bulletin of Mathematical Biology Open Access 01 December 2023
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout

References
Baldi, P. & Brunak, S. Bioinformatics: The Machine Learning Approach 2nd edn (MIT Press, Cambridge, MA, 2001).
Onami, S., Kyoda, K., Morohashi, M. & Kitano, H. in Foundations of Systems Biology (ed. Kitano, H.) 59â75 (MIT Press, Cambridge, MA, 2001).
Ideker, T. E., Thorsson, V. & Karp, R. M. in Pac. Symp. Biocomput. (eds Altman, R. B., Dunker, A. K., Hunter, L., Lauderdale, K. & Klein, T. E.) 305â316 (World Scientific, Singapore, 2000).
Ideker, T. et al. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18 (Suppl. 1), S233âS240 (2002).
Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929â934 (2001).
Borisuk, M. T. & Tyson, J. J. Bifurcation analysis of a model of mitotic control in frog eggs. J. Theor. Biol. 195, 69â85 (1998).
Chen, K. C. et al. Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol. Biol. Cell 11, 369â391 (2000).
Edwards, J. S., Ibarra, R. U. & Palsson, B. O. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nature Biotechnol. 19, 125â130 (2001).
Fell, D. Understanding the Control of Metabolism (Portland, London, 1997).
Morohashi, M. et al. Robustness as a measure of plausibility in models of biochemical networks. J. Theor. Biol. 216, 19â30 (2002).
Kitano, H. Standards for modeling. Nature Biotechnol. 20, 337 (2002).
Hucka, M. et al. in in Pac. Symp. Biocomput. (eds Altman, R. B., Dunker, A. K., Hunter, L. & Klein, T. E.) 450â461 (World Scientific, Singapore, 2002).
Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27â30 (2000).
Alliance for Cellular Signaling ãhttp://www.AfCS.org/ã (2002).
Signal Transduction Knowledge Environment ãhttp://www.stke.org/ã (2002).
Wiener, N. Cybernetics: Or Control and Communication in the Animal and the Machine (MIT Press, Cambridge, MA, 1948).
Bertalanffy, L. v. General System Theory (Braziller, New York, 1968).
Kitano, H. Systems biology: a brief overview. Science 295, 1662â1664 (2002).
Kitano, H. in Foundations of Systems Biology (ed. Kitano, H.) 1â36 (MIT Press, Cambridge, MA, 2001).
Alon, U. et al. Robustness in bacterial chemotaxis. Nature 397, 168â171 (1999).
Yi, T. M. et al. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Natl Acad. Sci. USA 97, 4649â4653 (2000).
Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913â917 (1997).
Weng, G., Bhalla, U. S. & Iyengar, R. Complexity in biological signaling systems. Science 284, 92â96 (1999).
Levine, K., Tinkelenberg, A. & Cross, F. in Progress in Cell Cycle Research (eds Meijer, L., Guidet, S. & Lim Tung, H. Y.) 101â114 (Plenum, New York, 1995).
Chang, D. E., Smalley, D. J. & Conway, T. Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model. Mol. Microbiol. 45, 289â306 (2002).
Little, J. W., Shepley, D. P. & Wert, D. W. Robustness of a gene regulatory circuit. EMBO J. 18, 4299â4307 (1999).
Gonze, D., Halloy, J. & Goldbeter, A. Robustness of circadian rhythms with respect to molecular noise. Proc. Natl Acad. Sci. USA 99, 673â678 (2002).
von Dassow, G. et al. The segment polarity network is a robust developmental module. Nature 406, 188â192 (2000).
Eldar, A. et al. Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419, 304â308 (2002).
Carlson, J. M. & Doyle, J. Highly optimized tolerance: a mechanism for power laws in designed systems. Phys. Rev. E 60, 1412â1427 (1999).
Carlson, J. M. & Doyle, J. Complexity and robustness. Proc. Natl Acad. Sci. USA 99, 2538â2545 (2002).
Jeong, H. et al. The large-scale organization of metabolic networks. Nature 407, 651â654 (2000).
Jeong, H. et al. Lethality and centrality in protein networks. Nature 411, 41â42 (2001).
Albert, R., Jeong, H. & Barabasi, A. L. Error and attack tolerance of complex networks. Nature 406, 378â382 (2000).
Podani, J. et al. Comparable system-level organization of Archaea and Eukaryotes. Nature Genet. 29, 54â56 (2001).
Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307â310 (2000).
Adamic, L. A., Lukose, R. M., Puniyani, A. R. & Huberman, B. A. Search in power-law networks. Phys. Rev. E 64, 046135-1â046135-8 (2001).
Higgins, J. The theory of oscillating reactions. Ind. Eng. Chem. 59, 18â62 (1967).
Berridge, M. J. & Rapp, P. E. A comparative survey of the function, mechanism and control of cellular oscillators. J. Exp. Biol. 81, 217â279 (1979).
Goldbeter, A. Biochemical Oscillations and Cellular Rhythms (Cambirdge Univ. Press, Cambridge, 1996).
Tyson, J. J. in Computatoinal Cell Biology (eds Fall, C. P., Marland, E. S., Wagner, J. M. & Tyson, J. J.) 230â260 (Springer, New York, 2002).
Jordan, J. D., Landau, E. M. & Iyengar, R. Signaling networks: the origins of cellular multitasking. Cell 103, 193â200 (2000).
Bhalla, U. S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 283, 381â387 (1999).
Hartwell, L. H. et al. From molecular to modular cell biology. Nature 402, C47âC52 (1999).
Csete, M. E. & Doyle, J. C. Reverse engineering of biological complexity. Science 295, 1664â1669 (2002).
Edelman, G. M. & Gally, J. A. Degeneracy and complexity in biological systems. Proc. Natl Acad. Sci. USA 98, 13763â13768 (2001).
Shen-Orr, S. S. et al. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genet. 31, 64â68 (2002).
Cascante, M. et al. Metabolic control analysis in drug discovery and disease. Nature Biotechnol. 20, 243â249 (2002).
Bailey, J. E. Lessons from metabolic engineering for functional genomics and drug discovery. Nature Biotechnol. 17, 616â618 (1999).
Bailey, J. E. Reflections on the scope and the future of metabolic engineering and its connections to functional genomics and drug discovery. Metab. Eng, 3, 111â114 (2001).
Lipinski, C. A. et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3â26 (2001).
Butina, D., Segall, M. D. & Frankcombe, K. Predicting ADME properties in silico: methods and models. Drug Discov. Today 7, S83âS88 (2002).
Ekins, S. & Rose, J. In silico ADME/Tox: the state of the art. J. Mol. Graph. Model. 20, 305â309 (2002).
Selick, H. E., Beresford, A. P. & Tarbit, M. H. The emerging importance of predictive ADME simulation in drug discovery. Drug Discov. Today 7, 109â116 (2002).
Li, A. P. & Segall, M. Early ADME/Tox studies and in silico screening. Drug Discov. Today 7, 25â27 (2002).
Ekins, S. et al. Progress in predicting human ADME parameters in silico. J. Pharmacol. Toxicol. Methods 44, 251â272 (2000).
Ueda, H. R., Hagiwara, M. & Kitano, H. Robust oscillations within the interlocked feedback model of Drosophila circadian rhythm. J. Theor. Biol. 210, 401â406 (2001).
Leloup, J. C., Gonze, D. & Goldbeter, A. Limit cycle models for circadian rhythms based on transcriptional regulation in Drosophila and Neurospora. J. Biol. Rhythms 14, 433â448 (1999).
Schoeberl, B. et al. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nature Biotechnol. 20, 370â375 (2002).
Tyson, J. J. & Novak, B. Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J. Theor. Biol. 210, 249â263 (2001).
Novak, B. et al. Mathematical model of the fission yeast cell cycle with checkpoint controls at the G1/S, G2/M and metaphase/anaphase transitions. Biophys. Chem. 72, 185â200 (1998).
Ni, T. C. & Savageau, M. A. Model assessment and refinement using strategies from biochemical systems theory: application to metabolism in human red blood cells. J. Theor. Biol. 179, 329â368 (1996).
Ni, T. C. & Savageau, M. A. Application of biochemical systems theory to metabolism in human red blood cells. Signal propagation and accuracy of representation. J. Biol. Chem. 271, 7927â7941 (1996).
Jamshidi, N. et al. Dynamic simulation of the human red blood cell metabolic network. Bioinformatics 17, 286â287 (2001).
Edwards, J. S. & Palsson, B. O. Robustness analysis of the Escherichia coli metabolic network. Biotechnol. Prog. 16, 927â939 (2000).
Bassingthwaighte, J. B. Strategies for the physiome project. Ann. Biomed. Eng. 28, 1043â1058 (2000).
Rudy, Y. From genome to physiome: integrative models of cardiac excitation. Ann. Biomed. Eng. 28, 945â950 (2000).
Noble, D. Modeling the heartâfrom genes to cells to the whole organ. Science 295, 1678â1682 (2002).
Guet, C. C. et al. Combinatorial synthesis of genetic networks. Science 296, 1466â1470 (2002).
Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339â342 (2000).
Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335â338 (2000).
Acknowledgements
I thank S. Imai, J. Doyle, J. Tyson, T.-M. Yi, N. Hiroi and M. Morohashi for their useful comments on the manuscript. This research is, in part, supported by: the Rice Genome and Simulation Project (Ministry of Agriculture), International Standard Development area of International Joint Research Grant (New Energy and Industrial Technology Development Organization (NEDO)/Japanese Ministry of Economy, Trade and Industry (METI)), Exploratory Research for Advanced Technology (ERATO) and Institute for Bioinformatics Research and Development (BIRD) program (Japan Science and Technology Corporation), and through the special coordination funds for promoting science and technology from the Japanese government's Ministry of Education, Culture, Sports, Science, and Technology.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kitano, H. Computational systems biology. Nature 420, 206â210 (2002). https://doi.org/10.1038/nature01254
Issue Date:
DOI: https://doi.org/10.1038/nature01254
This article is cited by
-
Analysis of sports records evolution and limits based on integrated features
Scientific Reports (2024)
-
Systems biology approaches to identify driver genes and drug combinations for treating COVID-19
Scientific Reports (2024)
-
Information-Theoretic Analysis of a Model of CAR-4-1BB-Mediated NFκB Activation
Bulletin of Mathematical Biology (2024)
-
Integrative pathway and network analysis provide insights on flooding-tolerance genes in soybean
Scientific Reports (2023)
-
Parameter Optimization for Molecular Communication via Diffusion Model using Equilibrium and Enhanced Equilibrium Algorithms
Arabian Journal for Science and Engineering (2023)