Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the outer membrane complex of a type IV secretion system

Abstract

Type IV secretion systems are secretion nanomachines spanning the two membranes of Gram-negative bacteria. Three proteins, VirB7, VirB9 and VirB10, assemble into a 1.05 megadalton (MDa) core spanning the inner and outer membranes. This core consists of 14 copies of each of the proteins and forms two layers, the I and O layers, inserting in the inner and outer membrane, respectively. Here we present the crystal structure of a ∼0.6 MDa outer-membrane complex containing the entire O layer. This structure is the largest determined for an outer-membrane channel and is unprecedented in being composed of three proteins. Unexpectedly, this structure identifies VirB10 as the outer-membrane channel with a unique hydrophobic double-helical transmembrane region. This structure establishes VirB10 as the only known protein crossing both membranes of Gram-negative bacteria. Comparison of the cryo-electron microscopy (cryo-EM) and crystallographic structures points to conformational changes regulating channel opening and closing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The T4S system outer-membrane complex.
Figure 2: Ribbon diagram of the heterotrimer unit.
Figure 3: Inter-heterotrimeric interactions.
Figure 4: Transmembrane region of the T4S system outer-membrane complex and proposed mechanism of pore opening and closure.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Structure factors and coordinates are deposited in the Protein Data Bank under accession number 3JQO.

References

  1. Fronzes, R., Christie, P. J. & Waksman, G. The structural biology of type IV secretion systems. Nature Rev. Microbiol. 7, 703–714 (2009)

    Article  CAS  Google Scholar 

  2. Christie, P. J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S. & Cascales, E. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu. Rev. Microbiol. 59, 451–485 (2005)

    Article  CAS  Google Scholar 

  3. Schroder, G. & Lanka, E. The mating pair formation system of conjugative plasmids – a versatile secretion machinery for transfer of proteins and DNA. Plasmid 54, 1–25 (2005)

    Article  Google Scholar 

  4. Backert, S. & Selbach, M. Role of type IV secretion in Helicobacter pylori pathogenesis. Cell. Microbiol. 10, 1573–1581 (2008)

    Article  CAS  Google Scholar 

  5. Ninio, S. & Roy, C. R. Effector proteins translocated by Legionella pneumophila: strength in numbers. Trends Microbiol. 15, 372–380 (2007)

    Article  CAS  Google Scholar 

  6. McCullen, C. A. & Binns, A. N. Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu. Rev. Cell Dev. Biol. 22, 101–127 (2006)

    Article  CAS  Google Scholar 

  7. Burns, D. L. Type IV transporters of pathogenic bacteria. Curr. Opin. Microbiol. 6, 29–34 (2003)

    Article  CAS  Google Scholar 

  8. Thomas, C. M. & Nielsen, K. M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Rev. Microbiol. 3, 711–721 (2005)

    Article  CAS  Google Scholar 

  9. Fronzes, R., Remaut, H. & Waksman, G. Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria. EMBO J. 27, 2271–2280 (2008)

    Article  CAS  Google Scholar 

  10. Gomis-Ruth, F. X. & Coll, M. Cut and move: protein machinery for DNA processing in bacterial conjugation. Curr. Opin. Struct. Biol. 16, 744–752 (2006)

    Article  Google Scholar 

  11. Bayliss, R. et al. NMR structure of a complex between the VirB9/VirB7 interaction domains of the pKM101 type IV secretion system. Proc. Natl Acad. Sci. USA 104, 1673–1678 (2007)

    Article  ADS  CAS  Google Scholar 

  12. Fronzes, R. et al. Structure of a type IV secretion system core complex. Science 323, 266–268 (2009)

    Article  CAS  Google Scholar 

  13. Jakubowski, S. J. et al. Agrobacterium VirB10 domain requirements for type IV secretion and T pilus biogenesis. Mol. Microbiol. 71, 779–794 (2009)

    Article  CAS  Google Scholar 

  14. Terradot, L. et al. Structures of two core subunits of the bacterial type IV secretion system, VirB8 from Brucella suis and ComB10 from Helicobacter pylori . Proc. Natl Acad. Sci. USA 102, 4596–4601 (2005)

    Article  ADS  CAS  Google Scholar 

  15. Dong, C. et al. Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein. Nature 444, 226–229 (2006)

    Article  ADS  CAS  Google Scholar 

  16. Meng, G., Fronzes, R., Chandran, V., Remaut, H. & Waksman, G. Protein oligomerization in the bacterial outer membrane. Mol. Membr. Biol. 26, 136–145 (2009)

    Article  CAS  Google Scholar 

  17. Koronakis, V., Sharff, A., Koronakis, E., Luisi, B. & Hughes, C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405, 914–919 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Cascales, E. & Christie, P. J. Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc. Natl Acad. Sci. USA 101, 17228–17233 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Atmakuri, K., Cascales, E. & Christie, P. J. Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol. Microbiol. 54, 1199–1211 (2004)

    Article  CAS  Google Scholar 

  20. Llosa, M., Zunzunegui, S. & de la Cruz, F. Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc. Natl Acad. Sci. USA 100, 10465–10470 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Cascales, E. & Christie, P. J. Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304, 1170–1173 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Sharff, A. J., Koronakis, E., Luisi, B. & Koronakis, V. Oxidation of selenomethionine: some MADness in the method! Acta Crystallogr. D 56, 785–788 (2000)

    Article  CAS  Google Scholar 

  23. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993)

    Article  CAS  Google Scholar 

  24. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994)

    Article  Google Scholar 

  25. Jones, T. A. in Molecular Replacement 91–95 (CCP4 Proceedings, 1992) 〈http://epubs.cclrc.ac.uk/bitstream/948/DL-SCI-R33.pdf〉.

    Google Scholar 

  26. Kjeldgaard, M. & Jones, T. A. in From First Map to Final Model 59–66 (CCP4 Proceedings, 1994) 〈http://epubs.cclrc.ac.uk/bitstream/950/DL-SCI-R35.pdf〉.

    Google Scholar 

  27. Kleywegt, G. & Jones, T. Software for handling macromolecular envelopes. Acta Crystallogr. D 55, 941–944 (1999)

    Article  CAS  Google Scholar 

  28. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  29. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  30. McCoy, A. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  31. Murshudov, G., Vagin, A. & Dodson, E. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  Google Scholar 

  32. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  Google Scholar 

  33. Afonine, P. V., Grosse-Kunstleve, R. W. & Adams, P. D. The Phenix refinement framework. CCP4 Newsl. 42, contribution 8 (2005) 〈http://www.ccp4.ac.uk/newsletters/newsletter42.pdf〉.

Download references

Acknowledgements

This work was funded by Wellcome Trust grant 082227 to G.W. We thank A. Thompson and the staff of beamline PROXIMA 1 at Soleil, the staff of beamline ID14.4 at the European Synchrotron Radiation Facility, and H. Saibil, E. Orlova and P. Christie for comments on the manuscript. We thank A. Kumar for help in implementing the immunofluorescence experiments.

Author Contributions V.C. produced the complex, optimized crystals, and built, refined and analysed the structure. R.F. designed the purification protocol, produced the complex, grew the first crystals, optimized crystals and analysed the structure. S.D. and J.N. solved the structure by molecular replacement and provided the electron density map. N.C. collected crystallographic data. G.W. supervised the work, analysed the structure and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Waksman.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary Table 1, Supplementary Figures 1-10 with Legends and Supplementary References. (PDF 13100 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandran, V., Fronzes, R., Duquerroy, S. et al. Structure of the outer membrane complex of a type IV secretion system . Nature 462, 1011–1015 (2009). https://doi.org/10.1038/nature08588

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08588

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing