Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nonlinear optical effects in trapping nanoparticles with femtosecond pulses

Abstract

The optical trapping technique has been widely used in various areas to manipulate particles, cells, and so forth. The principle of trapping is based on the interaction between optical electric fields and induced linear polarizations. Here we show a novel phenomenon of trapping arising from nonlinear polarization when we trap gold nanoparticles by ultrashort near-infrared laser pulses. That is, the stable trap site is split into two equivalent positions (we call this ‘trap split’). The trap positions are aligned along the direction of the incident laser polarization. The dependencies of trap split on the trapping-laser power and wavelength were investigated. The results were successfully interpreted in terms of the nonlinear polarization caused by the femtosecond pulses. This method may give novel applications to micromachining, nanofabrication, and biological samples as well as atomic and molecular trapping at low temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the experimental set-up.
Figure 2: Gold nanoparticles trapped by the Ti:sapphire laser in the CW and femtosecond-pulse modes.
Figure 3: The dependence of the distance between the two traps on the average power and wavelength of the trapping laser.
Figure 4: The dipole potential energy (〈Up〉, equation (2) and (5)) plotted against the radial distance from the beam centre (ρ).

Similar content being viewed by others

References

  1. Ashkin, A. & Dziedzic, J. M. Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1520 (1987).

    Article  ADS  Google Scholar 

  2. Chu, S. Laser manipulation of atoms and particles. Science 253, 861–866 (1991).

    Article  ADS  Google Scholar 

  3. Fällman, E. & Axner, O. Design for fully steerable dual-trap optical tweezers. Appl. Opt. 36, 2107–2113 (1997).

    Article  ADS  Google Scholar 

  4. Liesener, J., Reicherter, M., Haist, T. & Tiziani, H. J. Multi-functional optical tweezers using computer-generated holograms. Opt. Commun. 185, 77–82 (2000).

    Article  ADS  Google Scholar 

  5. Curtis, J. E., Koss, B. A. & Grier, D. G. Dynamic holographic optical tweezers. Opt. Commun. 207, 169–175 (2002).

    Article  ADS  Google Scholar 

  6. Kaputa, D. S., Kuzmin, A. N., Kachynski, A. V., Cartwright, A. N. & Prasad, P. N. Dynamics of multiple trapping by a single-beam laser tweezer. Appl. Opt. 44, 3963–3968 (2005).

    Article  ADS  Google Scholar 

  7. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article  ADS  Google Scholar 

  8. Garbin, V. et al. Optical micro-manipulation using Laguerre–Gaussian beams. Jpn. J. Appl. Phys. 44, 5773–5776 (2005).

    Article  ADS  Google Scholar 

  9. Agate, B., Brown, C. T. A., Sibbett, W. & Dholakia, K. Femtosecond optical tweezers for in situ control of two-photon fluorescence. Opt. Express 12, 3011–3017 (2004).

    Article  ADS  Google Scholar 

  10. Bouhelier, A., Beversluis, M. R. & Novotny, L. Characterization of nanoplasmonic structures by locally excited photoluminescence. Appl. Phys. Lett. 83, 5041–5043 (2003).

    Article  ADS  Google Scholar 

  11. Imura, K., Okamoto, H., Hossain, M. K. & Kitajima, M. Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites. Nano Lett. 6, 2173–2176 (2006).

    Article  ADS  Google Scholar 

  12. Jiang, Y. et al. Bioimaging with two-photon-induced luminescence from triangular nanoplates and nanoparticle aggregates of gold. Adv. Mater. 21, 2309–2313 (2009).

    Article  Google Scholar 

  13. Svoboda, K. & Block, S. M. Optical trapping of metallic Rayleigh particles. Opt. Lett. 19, 930–932 (1994).

    Article  ADS  Google Scholar 

  14. Tlusty, T., Meller, A. & Bar-Ziv, R. Optical gradient forces of strongly localized fields. Phys. Rev. Lett. 81, 1738–1741 (1998).

    Article  ADS  Google Scholar 

  15. Lock, J. A. Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz–Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration. Appl. Opt. 43, 2532–2544 (2004).

    Article  ADS  Google Scholar 

  16. Lock, J. A. Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz–Mie theory. II. On-axis trapping force. Appl. Opt. 43, 2545–2554 (2004).

    Article  ADS  Google Scholar 

  17. Hansen, P. M., Bhatia, V. K., Harrit, N. & Oddershede, L. Expanding the optical trapping range of gold nanoparticles. Nano Lett. 5, 1937–1942 (2005).

    Article  ADS  Google Scholar 

  18. Seol, Y., Carpenter, A. E. & Perkins, T. T. Gold nanoparticles: Enhanced optical trapping and sensitivity coupled with significant heating. Opt. Lett. 31, 2429–2431 (2006).

    Article  ADS  Google Scholar 

  19. Toussaint, K. C. et al. Plasmon resonance-based optical trapping of single and multiple Au nanoparticles. Opt. Express 15, 12017–12029 (2007).

    Article  ADS  Google Scholar 

  20. Dienerowitz, M., Mazilu, M., Reece, P. J., Krauss, T. F. & Dholakia, K. Optical vortex trap for resonant confinement of metal nanoparticles. Opt. Express 16, 4991–4999 (2008).

    Article  ADS  Google Scholar 

  21. Richards, B. & Wolf, E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. R. Soc. A 253, 358–379 (1959).

    ADS  MATH  Google Scholar 

  22. Novotny, L. & Hecht, B. Principles of Nano-Optics 45–66 (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research (Grant Nos. 18205004, 19049015, and 22225002) from the Japan Society for the Promotion of Science (JSPS) and from the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the work in designing the experiments and analysing the results. Y.J. carried out the experiments. Y.J. and H.O. wrote the manuscript.

Corresponding author

Correspondence to Hiromi Okamoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Movie

Supplementary Movie 1 (WMV 1468 kb)

Supplementary Movie

Supplementary Movie 2 (WMV 1935 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Y., Narushima, T. & Okamoto, H. Nonlinear optical effects in trapping nanoparticles with femtosecond pulses. Nature Phys 6, 1005–1009 (2010). https://doi.org/10.1038/nphys1776

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1776

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing