Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Working memory: looking back and looking forward

Key Points

  • The concept of working memory assumes that a limited capacity system temporarily stores information and thereby supports human thought processes. One prevalent model of working memory comprises three components: a central executive, a verbal storage system called the phonological loop, and a visual storage system called the visuospatial sketchpad.

  • The phonological loop consists of a store that can hold memory traces for a few seconds, and an articulatory rehearsal process. Retrieval and re-articulation are used to refresh memory traces, and the span of working memory is limited by the amount of material that can be articulated before the first item fades from the store. Word length and similarity between items strongly influence performance on tests of verbal working memory.

  • Various models have been proposed to account for how serial order is remembered. In chaining models, each item is a cue for the next item, but these models run into problems with sequences in which an item recurs and with similarity effects. Contextual models assume that successive items are associated with a contextual cue or that recall of order is based on positional associations between items.

  • It has been proposed that the phonological loop evolved to facilitate the acquisition of language. In support of this, phonological loop capacity is a good predictor of second language learning. Future studies seem likely to link the phonological loop more closely to theories of language perception and production.

  • The visuospatial sketchpad is less well understood than the phonological loop. Spatial and visual working memory also have limited capacity and the two can be dissociated. Visuospatial working memory predicts success in fields such as architecture and engineering.

  • One model proposes that the sketchpad is divided into two components, a visual cache and a retrieval and rehearsal process called the 'inner scribe', analogous to the storage and articulatory components of the phonological loop.

  • The central executive is the least understood component of working memory. In one model, control is divided between 'automatic' habits or schemas, and an attentional system called the supervisory activating system that intervenes to overrule habitual control.

  • To move our concept of the supervisory activating system beyond a simple 'homunculus', we need to specify the processes attributed to it, and then to explain them. The processes needed are to focus, divide and switch attention, and to connect working memory with long-term memory. To account for the latter capacity, a fourth component of working memory has been proposed: the episodic buffer, a limited capacity store that binds information to form integrated episodes.

  • Neuroimaging and neuropsychology have provided evidence for localization of the components of working memory. The phonological loop is associated with the left temporoparietal region, and visuospatial working memory with analogous areas in the right hemisphere. The central executive is probably associated with the frontal lobes.

  • Work on the phonological loop, the visuospatial sketchpad and the central executive should be more closely linked to studies on language, visual processing and motor control, and executive control, respectively. In addition, more work is needed on what drives working memory.

Abstract

The concept of working memory proposes that a dedicated system maintains and stores information in the short term, and that this system underlies human thought processes. Current views of working memory involve a central executive and two storage systems: the phonological loop and the visuospatial sketchpad. Although this basic model was first proposed 30 years ago, it has continued to develop and to stimulate research and debate. The model and the most recent results are reviewed in this article.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The three-component model of working memory.
Figure 2: A functional model of the phonological loop.
Figure 3: Visual and spatial short-term memory tasks.
Figure 4: The task devised by L. H. Brooks to study the role of visual imagery in verbal recall.
Figure 5: The multi-component working memory revision.
Figure 6: A tentative mapping of the working memory model components onto the brain.

Similar content being viewed by others

References

  1. Andrade, J. Working Memory in Context (Psychology, Hove, Sussex, 2001).

    Google Scholar 

  2. Miyake, A. & Shah, P. (eds) Models of Working Memory: Mechanisms of Active Maintenance and Executive Control (Cambridge Univ. Press, New York, 1999).

    Book  Google Scholar 

  3. Conway, A. R. A., Jarrold, C., Kane, M. J., Miyake, A. & Towse, J. N. Variation in Working Memory (Oxford Univ. Press, Oxford, in the press). References 1–3 provide excellent accounts of the current states of research on working memory, with reference 2 representing a range of theoretical approaches and highlighting their common features, reference 1 containing the view of a range of young British researchers on the strengths and weaknesses of the multi-component model, and reference 3 having more North American contributors and better reflecting approaches based on individual differences.

  4. Miyake, A. & Shah, P. in Models of Working Memory: Mechanisms of Active Maintenance and Executive Control (eds Miyake, A. & Shah, P.) 28–61 (Cambridge Univ. Press, New York, 1999).

    Book  Google Scholar 

  5. Cowan, N. in Models of Working Memory: Mechanisms of Active Maintenance and Executive Control (eds Miyake, A. & Shah, P.) 62–101 (Cambridge Univ. Press, New York, 1999). An alternative approach to working memory that focuses on attentional control. This leads to a different emphasis, but is not in any fundamental sense incompatible with a multi-component model.

    Book  Google Scholar 

  6. Nairne, J. S. A feature model of immediate memory. Mem. Cogn. 18, 251–269 (1990).

    Article  CAS  Google Scholar 

  7. Neath, I. Modeling the effects of irrelevant speech on memory. Psychon. Bull. Rev. 7, 403–423 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Nairne, J. S. Remembering over the short-term: the case against the standard model. Annu. Rev. Psychol. 53, 53–81 (2002).

    Article  PubMed  Google Scholar 

  9. Miller, G. A., Galanter, E. & Pribram, K. H. Plans and the Structure of Behavior (Holt, Rinehart & Winston, New York, 1960).

    Book  Google Scholar 

  10. Baddeley, A. D. & Hitch, G. J. in Recent Advances in Learning and Motivation (ed. Bower, G. A.) 47–89 (Academic, New York, 1974).

    Google Scholar 

  11. Hebb, D. O. The Organization of Behavior (Wiley, New York, 1949).

    Google Scholar 

  12. Brown, J. Some tests of the decay theory of immediate memory. Q. J. Exp. Psychol. 10, 12–21 (1958).

    Article  Google Scholar 

  13. Peterson, L. R. & Peterson, M. J. Short-term retention of individual verbal items. J. Exp. Psychol. 58, 193–198 (1959).

    Article  CAS  PubMed  Google Scholar 

  14. Melton, A. W. Implications of short-term memory for a general theory of memory. J. Verbal Learn. Verbal Behav. 2, 1–21 (1963).

    Article  Google Scholar 

  15. Baddeley, A. D. Human Memory: Theory and Practice 2nd edn (Psychology, Hove, Sussex, 1997).

    Google Scholar 

  16. Atkinson, R. C. & Shiffrin, R. M. in The Psychology of Learning and Motivation: Advances in Research and Theory (ed. Spence, K. W.) 89–195 (Academic, New York, 1968).

    Google Scholar 

  17. Craik, F. I. M. & Lockhart, R. S. Levels of processing: a framework for memory research. J. Verbal Learn. Verbal Behav. 11, 671–684 (1972).

    Article  Google Scholar 

  18. Shallice, T. & Warrington, E. K. Independent functioning of verbal memory stores: a neuropsychological study. Q. J. Exp. Psychol. 22, 261–273 (1970).

    Article  CAS  PubMed  Google Scholar 

  19. Vallar, G. & Papagno, C. in Handbook of Memory Disorders (eds Baddeley, A. D., Kopelman, M. D. & Wilson, B. A.) 249–270 (Wiley, Chichester, 2002). An excellent summary of the implications of the study of phonological working memory of neuropsychological patient studies.

    Google Scholar 

  20. Conrad, R. Acoustic confusion in immediate memory. B. J. Psychol. 55, 75–84 (1964).

    Article  Google Scholar 

  21. Conrad, R. & Hull, A. J. Information, acoustic confusion and memory span. B. J. Psychol. 55, 429–432 (1964).

    Article  CAS  Google Scholar 

  22. Baddeley, A. D. Short-term memory for word sequences as a function of acoustic, semantic and formal similarity. Q. J. Exp. Psychol. 18, 362–365 (1966).

    Article  CAS  PubMed  Google Scholar 

  23. Baddeley, A. D. The influence of acoustic and semantic similarity on long-term memory for word sequences. Q. J. Exp. Psychol. 18, 302–309 (1966).

    Article  CAS  PubMed  Google Scholar 

  24. Baddeley, A. D. Thomson, N. & Buchanan, M. Word length and the structure of short-term memory. J. Verbal Learn. Verbal Behav. 14, 575–589 (1975).

    Article  Google Scholar 

  25. Murray, D. J. Articulation and acoustic confusability in short-term memory. J. Exp. Psychol. 78, 679–684 (1968).

    Article  Google Scholar 

  26. Vallar, G. & Baddeley, A. D. Fractionation of working memory. Neuropsychological evidence for a phonological short-term store. J. Verbal Learn. Verbal Behav. 23, 151–161 (1984).

    Article  Google Scholar 

  27. Baddeley, A. D. & Wilson, B. Phonological coding and short-term memory in patients without speech. J. Mem. Lang. 24, 490–502 (1985).

    Article  Google Scholar 

  28. Caplan, D., Rochon, E. & Waters, G. S. Articulatory and phonological determinants of word-length effects in span tasks. Q. J. Exp. Psychol. 45, 177–192 (1992).

    Article  CAS  Google Scholar 

  29. Henson, R. N. A. in Working Memory in Perspective (ed. Andrade, J.) 151–174 (Psychology, Hove, Sussex, 2001). Offers a clear and useful summary of neuroimaging research viewed from a working memory perspective.

    Google Scholar 

  30. Henson, R. N. A., Norris, D. G., Page, M. P. A. & Baddeley, A. D. Unchained memory: error patterns rule out chaining models of immediate serial recall. Q. J. Exp. Psychol. 49, 80–115 (1996).

    Article  Google Scholar 

  31. Brown, G. D. A. Preece, T. & Hulme, C. Oscillator-based memory for serial order. Psychol. Rev. 107, 127–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Murdock, B. B. TODAM2: A model for the storage and retrieval of item, associative, and serial order information. Psychol. Rev. 100, 183–203 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Henson, R. N. A. Item repetition in short-term memory: Ranschburg repeated. J. Exp. Psychol. Learning Mem. Cogn. 24, 1162–1181 (1998).

    Article  CAS  Google Scholar 

  34. Baddeley, A. D. How does acoustic similarity influence short-term memory? Q. J. Psychol. 20, 249–264 (1968).

    CAS  Google Scholar 

  35. Burgess, N. & Hitch, G. J. Towards a network model of the articulatory loop. J. Mem. Lang. 31, 429–460 (1992).

    Article  Google Scholar 

  36. Burgess, N. & Hitch, G. J. Memory for serial order: a network model of the phonological loop and its timing. Psychol. Rev. 106, 551–581 (1999). A good example of one of a range of applications of computational modelling to the study of working memory.

    Article  Google Scholar 

  37. Henson, R. N. A. Short-term memory for serial order. The start–end model. Cogn. Psychol. 36, 73–137 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Page, M. A. & Norris, D. The primacy model: a new model of immediate serial recall. Psychol. Rev. 105, 761–781 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Logie, R. H., Della Sala, S., Laiacona, M., Chalmers, P. & Wynn, V. Group aggregates and individual reliability: the case of verbal short-term memory. Mem. Cogn. 24, 305–321 (1996). Probably the only study to attempt to quantify the magnitude and robustness of the phonological similarity and word-length effects.

    Article  CAS  Google Scholar 

  40. Larsen, J. D. & Baddeley, A. D. Disruption of verbal STM by irrelevant speech, articulatory suppression and manual tapping: do they have a common source? Q. J. Exp. Psychol. (in the press).

  41. Neath, I. Farley, L. A. & Surprenant, A. M. Directly assessing the relationship between speech and articulatory suppression. Q. J. Exp. Psychol. (in the press).

  42. Hanley, J. R. & Bakopoulou, E. Irrelevant speech, articulatory suppression and phonological similarity: a test of the phonological loop model and the feature model. Psychon. Bull. Rev. 10, 435–444 (2003). This study emphasizes the role of strategy in working memory, demonstrating powerful effects of strategic instructions to subjects.

    Article  PubMed  Google Scholar 

  43. Lovatt, P. & Avons, S. E. in Working Memory in Perspective (ed. Andrade, J.) 199–218 (Psychology, Hove, Sussex, 2001).

    Google Scholar 

  44. Brown, G. D. A. & Hulme, C. Modeling item length effects in memory span: no rehearsal needed? J. Mem. Lang. 34, 594–621 (1995).

    Article  Google Scholar 

  45. Neath, I. & Nairne, J. S. Word-length effects in immediate memory: overwriting trace-decay theory. Psychon. Bull. Rev. 2, 429–441 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Cowan, N., Baddeley, A. D., Elliott, E. M. & Norris, J. List composition and the word length effect in immediate recall: a comparison of localist and globalist assumptions. Psychol. Bull. Rev. 10, 74–79 (2003).

    Article  Google Scholar 

  47. Baddeley, A. D., Chincotta, D., Stafford, L. & Turk, D. Is the word length effect in STM entirely attributable to output delay? Evidence from serial recognition. Q. J. Exp. Psychol. 55A, 353–369 (2002).

    Article  Google Scholar 

  48. Dosher, B. A. & Ma, J. J. Output loss or rehearsal loop? Output-time versus pronunciation-time limits in immediate recall for forgetting-matched materials. J. Exp. Psychol. Learn. 24, 316–335 (1998).

    Article  CAS  Google Scholar 

  49. Lovatt, P., Avons, S. E. & Masterson, J. The word length effect and disyllabic words. Q. J. Exp. Psychol. 53, 1–22 (2000).

    Article  CAS  Google Scholar 

  50. Baddeley, A. D. & Andrade, J. Reversing the word-length effect: a comment on Caplan, Rochon and Waters. Q. J. Exp. Psychol. 47A, 1047–1054 (1994).

    Article  Google Scholar 

  51. Caplan, D. & Waters, G. S. Articulatory length and phonological similarity in span tasks: a reply to Baddeley and Andrade. Q. J. Exp. Psychol. 47A, 1055–1062 (1994).

    Article  Google Scholar 

  52. Service, E. Effect of word length on immediate serial recall depends on phonological complexity, not articulatory duration. Q. J. Exp. Psychol. 51A, 283–304 (1998).

    Article  Google Scholar 

  53. Mueller, S. T., Seymour, T. L., Kieras, D. E. & Meyer, D. E. Theoretical implications of articulatory duration, phonological similarity, and phonological complexity in verbal working memory. J. Exp. Psychol. Learn. Mem. Cogn. (in the press). The most careful and sophisticated analysis of the roles of spoken duration and phonological similarity in verbal STM, leading to a clear and simple theoretical conclusion. A good account of potential pitfalls in this area of research is also provided.

  54. Colle, H. A. Auditory encoding in visual short-term recall: effects of noise intensity and spatial location. J. Verbal Learn. Verbal Behav. 19, 722–735 (1980).

    Article  Google Scholar 

  55. Jones, D. M. in Attention: Selection, Awareness and Control (eds Baddeley, A. D. & Weiskrantz, L.) 87–104 (Clarendon, Oxford, 1993).

    Google Scholar 

  56. Jones, D. M. & Macken, W. J. Irrelevant tones produce an irrelevant speech effect: implications for phonological coding in working memory. J. Exp. Psychol. Learn. Mem. Cogn. 19, 369–381 (1993).

    Article  Google Scholar 

  57. Salame, P. & Baddeley, A. D. Disruption of short-term memory by unattended speech: implications for the structure of working memory. J. Verbal Learn. Verbal Behav. 21, 150–164 (1982).

    Article  Google Scholar 

  58. Colle, H. A. & Welsh, A. Acoustic masking in primary memory. J. Verbal Learn. Verbal Behav. 15, 17–32 (1976).

    Article  Google Scholar 

  59. Salame, P. & Baddeley, A. D. Phonological factors in STM: similarity and the unattended speech effect. Bull. Psychon. Soc. 24, 263–265 (1986).

    Article  Google Scholar 

  60. Jones, D. M. & Macken, W. J. Phonological similarity in the irrelevant speech effect. Within- or between-stream similarity? J. Exp. Psychol. Learn. Mem. Cogn. 21, 103–115 (1995).

    Article  Google Scholar 

  61. Larsen, J. D. Baddeley, A. D. & Andrade, J. Phonological similarity and the irrelevant speech effect: implications for models of short-term verbal memory. Memory 8, 145–157 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Le Compte, D. C. & Shaibe, D. M. On the irrelevance of phonological similarity to the irrelevant speech effect. Q. J. Exp. Psychol. 50A, 100–118 (1997).

    Article  Google Scholar 

  63. Jones, D., Beaman, M. & Macken, W. J. in Models of Short-Term Memory (ed. Gathercole, S.) 209–237 (Psychology, Hove, Sussex, 1996).

    Google Scholar 

  64. Page, M. A. & Norris, D. The irrelevant sound effect: what needs modeling and a tentative model. Q. J. Exp. Psychol. (in the press).

  65. Macken, W. J. & Jones, D. M. Reification of phonological storage. Q. J. Exp. Psychol. (in the press).

  66. Baddeley, A. D., Gathercole, S. E. & Papagno, C. The phonological loop as a language learning device. Psychol. Rev. 105, 158–173 (1998). Summarizes the evidence supporting the view that the phonological loop serves as a device for facilitating language acquisition.

    Article  CAS  PubMed  Google Scholar 

  67. Papagno, C., Valentine, T. & Baddeley, A. D. Phonological short-term memory and foreign language vocabulary learning. J. Mem. Lang. 30, 331–347 (1991).

    Article  Google Scholar 

  68. Papagno, C. & Vallar, G. Phonological short-term memory and the learning of novel words: the effect of phonological similarity and item length. Q. J. Exp. Psychol. 44A, 47–67 (1992).

    Article  Google Scholar 

  69. Service, E. Phonology, working memory and foreign-language learning. Q. J. Exp. Psychol. 45A, 21–50 (1992).

    Article  Google Scholar 

  70. Atkins, W. B. & Baddeley, A. D. Working memory and distributed vocabulary learning. App. Psycholinguistics 19, 537–552 (1998).

    Article  Google Scholar 

  71. Gathercole, S. E. & Adams, A. M. Children's phonological working memory: contributions of long-term knowledge and rehearsal. J. Mem. Lang. 33, 672–788 (1994).

    Article  Google Scholar 

  72. Gathercole, S. E. & Baddeley, A. D. Evaluation of the role of phonological STM in the development of vocabulary in children: a longitudinal study. J. Mem. Lang. 28, 200–213 (1989).

    Article  Google Scholar 

  73. Gathercole, S. E. & Baddeley, A. D. Phonological memory deficits in language-disordered children: is there a causal connection? J. Mem. Lang. 29, 336–360 (1990).

    Article  Google Scholar 

  74. Gathercole, S. E., Pickering, S., Hall, M. & Peaker, S. Dissociable lexical and phonological influences on serial recognition and serial recall. Q. J. Exp. Psychol. 54A, 1–30 (2001).

    Article  Google Scholar 

  75. Houghton, G. Hartley, T. & Glasspool, D. W. in Models of Short-Term Memory (ed. Gathercole, S. E.) 101–128 (Psychology, Hove, Sussex, 1996).

    Google Scholar 

  76. Gathercole, S. E. Is nonword repetition a test of phonological memory or long-term knowledge? It all depends on the nonwords. Mem. Cogn. 23, 83–94 (1995).

    Article  CAS  Google Scholar 

  77. Thorn, A. S. C., Gathercole, S. E. & Frankish, C. R. Language familiarity effects in short-term memory: the role of output delay and long-term knowledge. Q. J. Exp. Psychol. 55A, 1363–1383 (2002).

    Article  Google Scholar 

  78. O'Regan, J. K., Rensink, R. A. & Clark, J. J. Change-blindness as a result of 'mudsplashes'. Nature 398, 34–34 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Simons, D. J. & Levin, D. T. Change blindness. Trends Cogn. Sci. 1, 261–267 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. O'Regan, J. K. Solving the real mysteries of visual-perception — the world as an outside memory. Can. J. Psychol. 46, 461–488 (1992).

    Article  CAS  PubMed  Google Scholar 

  81. Luck, S. J. & Vogel, E. K. The capacity of visual working memory for features and conjunctions. Nature 390, 279–281 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Vogel, E. K., Woodman, G. F. & Luck, S. J. Storage of features, conjunctions and objects in visual working memory. J. Exp. Psychol. Hum. Percept. Perf. 27, 92–114 (2001).

    Article  CAS  Google Scholar 

  83. Wheeler, M. E. & Treisman, A. M. Binding in short-term visual memory. J. Exp. Psychol. Gen. 131, 48–64 (2002). A good example of the recent tendency for prominent researchers in visual attention to analyse related processes of visuospatial working memory.

    Article  PubMed  Google Scholar 

  84. Milner, B. Inter-hemispheric differences in the locatisation of psychological processes in man. B. Med. Bull. 27, 272–277 (1971).

    Article  CAS  Google Scholar 

  85. Della Sala, S., Gray, C., Baddeley, A. D., Allamano, N. & Wilson, L. Pattern span: a tool for unwelding visuo-spatial memory. Neuropsychologia 37, 1189–1199 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Della Sala, S. & Logie, R. H. in Handbook of Memory Disorders (eds Baddeley, A. D., Kopelman, M. D. & Wilson, B. A.) 271–292 (Wiley, Chichester, 2002)

    Google Scholar 

  87. Smith, E. E. et al. Spatial versus object working memory: PET investigations. J. Cogn. Neurosci. 7, 337–358 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Mishkin, M., Ungerleider, L. G. & Macko, K. O. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 6, 414 (1983).

    Article  Google Scholar 

  89. Pickering, S. J. Cognitive approaches to the fractionation of visuo-spatial working memory. Cortex 37, 470–473 (2001).

    Article  Google Scholar 

  90. Smyth, M. M. & Pendleton, L. R. Space and movement in working memory. Q. J. Exp. Psychol. 42A, 291–304 (1990).

    Article  Google Scholar 

  91. Logie, R. H. Visuo-spatial processing in working memory. Q. J. Exp. Psychol. 38A, 229–247 (1986).

    Article  Google Scholar 

  92. Quinn, G. & McConnell, J. Irrelevant pictures in visual working memory. Q. J. Exp. Psychol. 49A, 200–215 (1996).

    Article  Google Scholar 

  93. Purcell, A. T. & Gero, J. S. Drawings and the design process. Design Studies 19, 389–430 (1998).

    Article  Google Scholar 

  94. Verstijnen, I. M., van Leeuwen, C., Goldschimdt, G., Haeml, R. & Hennessey, J. M. Creative discovery in imagery and perception: combining is relatively easy, restructuring takes a sketch. Acta Psychol. 99, 177–200 (1998).

    Article  CAS  Google Scholar 

  95. Ghiselin, B. The Creative Process (Mentor, New York, 1952).

    Google Scholar 

  96. Finke, R. & Slayton, K. Explorations of creative visual synthesis in mental imagery. Mem. Cogn. 16, 252–257 (1988).

    Article  CAS  Google Scholar 

  97. Finke, R., Ward, T. B. & Smith, S. M. Creative Cognition: Theory, Research and Applications (MIT Press, Cambridge, Massachusetts, 1992)

    Google Scholar 

  98. Pearson, D. G., Logie, R. H. & Gilhooly, K. Verbal representations and spatial manipulation during mental synthesis. Eur. J. Cogn. Psychol. 11, 295–314 (1999).

    Article  Google Scholar 

  99. Pearson, D. G. in Working Memory in Perspective (ed. Andrade, J.) 33–59 (Psychology, Hove, Sussex, 2001).

    Google Scholar 

  100. Brandimonte, M. & Gerbino, W. Mental image reversal and verbal recoding: when ducks become rabbits. Mem. Cogn. 21, 23–33 (1993).

    Article  CAS  Google Scholar 

  101. Brandimonte, M., Hitch, G. J. & Bishop, D. Verbal recoding of visual stimuli in pairs mental image transformations. Mem. Cogn. 20, 449–455 (1992).

    Article  CAS  Google Scholar 

  102. Logie, R. H. Visuo-spatial Working Memory (Lawrence Erlbaum, Hove, Sussex, 1995).

    Google Scholar 

  103. Goldman-Rakic, P. W. Topography of cognition: parallel distributed networks in primate association cortex. Annu. Rev. Neurosci. 11, 137–156 (1988). A review of studies in which single-unit recording in awake monkeys is used to analyse the nature of visuospatial working memory.

    Article  CAS  PubMed  Google Scholar 

  104. Goldman-Rakic, S. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Phil. Trans. R. Soc. Lond. B 351, 1445–1453 (1996).

    Article  CAS  Google Scholar 

  105. Baddeley, A. D. Working Memory (Oxford Univ. Press, Oxford, 1986).

    Google Scholar 

  106. Norman, D. A. & Shallice, T. in Consciousness and Self-regulation. Advances in Research and Theory (eds Davidson, R. J., Schwarts, G. E. & Shapiro, D.) 1–18 (Plenum, New York, 1986).

    Book  Google Scholar 

  107. Shallice, T. From Neuropsychology to Mental Structure (Cambridge Univ. Press, Cambridge, 1988).

    Book  Google Scholar 

  108. Shallice, T. in Principles of Frontal Lobe Function (eds Stuss, D. T. & Knight, R. T.) 261–277 (Oxford Univ. Press, New York, 2002).

    Book  Google Scholar 

  109. Shallice, T. & Burgess, P. W. Deficits in strategy application following frontal lobe damage in men. Brain 114, 727–741 (1991).

    Article  PubMed  Google Scholar 

  110. Bargh, J. A. & Ferguson, M. J. Beyond behaviorism: on the automaticity of higher mental processes. Psychol. Bull. 126, 925–945 (2000). This article makes a strong case for the importance of implicit factors in determining social behaviour.

    Article  CAS  PubMed  Google Scholar 

  111. Bargh, J. A., Chen, M. & Burrows, L. Automaticity of social behavior: direct effects of trait construct and stereotype activation on action. J. Personality Soc. Psychol. 71, 230–244 (1996).

    Article  CAS  Google Scholar 

  112. Chartrand, T. L. & Bargh, J. A. The chameleon effect: the perception-behavior link and social interaction. J. Personality Soc. Psychol. 76, 893–910 (1999).

    Article  CAS  Google Scholar 

  113. Chartrand, T. L. & Bargh, J. A. in Self and Motivation: Emerging Psychological Perspectives (eds Tesser, A., Stapel, D. A. & Wood, J. V.) 13–41 (American Psychological Association, Washington DC, 2002).

    Book  Google Scholar 

  114. Baumeister, R. F. & Exline, J. J. Self control, morality and human strength. J. Soc. Clin. Psychol. 19, 29–42 (2000).

    Article  Google Scholar 

  115. Baumeister, R. F., Bratslavsky, E., Muraven, M. & Tice, D. M. Ego-depletion: is the active self a limited resource? J. Personality Soc. Psychol. 74, 1252–1265 (1998).

    Article  CAS  Google Scholar 

  116. Muraven, M. & Baumeister, R. F. Self regulation and depletion of limited resources: does self control resemble a muscle? Psychol. Bull. 126, 247–259 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. McDougall, W. Outline of Psychology (Scribner, New York, 1923)

    Google Scholar 

  118. Attneave, F. in Sensory Communication (ed. Rosenblith, W.) 777–782 (MIT Press, Cambridge, Massachussetts, 1960).

    Google Scholar 

  119. Baddeley, A. D. Exploring the central executive. Q. J. Exp. Psychol. 49A, 5–28 (1996).

    Article  Google Scholar 

  120. Baddeley, A. D., Bressi, S., Della Sala, S., Logie, R. & Spinnler, H. The decline of working memory in Alzheimer's disease: a longitudinal study. Brain 114, 2521–2542 (1991).

    Article  PubMed  Google Scholar 

  121. Baddeley, A. D., Baddeley, H. A., Bucks, R. S. & Wilcock, G. K. Attentional control in Alzheimer's disease. Brain 124, 1492–1508 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Baddeley, A. D. & Wilson, B. A. Prose recall and amnesia: implications for the structure of working memory. Neuropsychologia 40, 1737–1743 (2002).

    Article  PubMed  Google Scholar 

  123. Logie, R. H., Della Sala, S., Wynn, V. & Baddeley, A. D. Visual similarity effects in immediate serial recall. Q. J. Exp. Psychol. 53A, 626–646 (2000).

    Article  Google Scholar 

  124. Baddeley, A. D. & Andrade, J. Working memory and the vividness of imagery. J. Exp. Psychol. Gen. 129, 126–145 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Baddeley, A. D. The episodic buffer: a new component of working memory? Trends Cogn. Sci. 4, 417–423 (2000). This gives a brief account of the argument for assuming a fourth component to the working memory model.

    Article  CAS  PubMed  Google Scholar 

  126. Baars, B. J. A Cognitive Theory of Consciousness (Cambridge Univ. Press, Cambridge, 1988).

    Google Scholar 

  127. Baars, B. J. The conscious access hypothesis: origins and recent evidence. Trends Cogn. Sci. 6, 47–52 (2002).

    Article  PubMed  Google Scholar 

  128. Dehaene, S. & Naccache, L. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79, 1–37 (2001). An excellent review of the neuropsychological and neuroimaging evidence for a limited capacity work-space system that is associated with conscious awareness.

    Article  CAS  PubMed  Google Scholar 

  129. Ericsson, K. A. & Kintsch, W. Long-term working memory. Psychol. Rev. 102, 211–245 (1995).

    Article  CAS  PubMed  Google Scholar 

  130. Warrington, E. J., Logue, V. & Pratt, R. T. C. The anatomical localisation of selective impairment of auditory verbal short-term memory. Neuropsychologia 9, 377–387 (1971).

    Article  CAS  PubMed  Google Scholar 

  131. Vallar, G., DiBetta, A. M. & Silveri, M. C. The phonological short-term store-rehearsal system: patterns of impairment and neural correlates. Neuropsychologia 35, 795–812 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Paulesu, E., Frith, C. D. & Frackowiak, R. S. J. The neural correlates of the verbal component of working memory. Nature 362, 342–345 (1993).

    Article  CAS  PubMed  Google Scholar 

  133. Jonides, J. et al. in The Psychology of Learning and Motivation (ed. Medin, D.) 43–88 (Academic, London, 1996). A good account of this group's work on applying neuroimaging to the study of both the phonological and visuospatial subsystems of working memory.

    Google Scholar 

  134. Jonides, J. & Smith, E. E. in Cognitive Neuroscience (ed. Rugg, M. D.) 243–276 (Psychology, Hove, Sussex, 1997).

    Google Scholar 

  135. Awh, E. et al. Dissociation of storage and retrieval in verbal working memory: evidence from positron emission tomography. Psychol. Sci. 7, 25–31 (1996).

    Article  Google Scholar 

  136. Smith, E. E. & Jonides, J. Working memory: a view from neuroimaging. Cogn. Psychol. 33, 5–42 (1997).

    Article  CAS  PubMed  Google Scholar 

  137. Smith, E., Jonides, J. & Koeppe, R. A. Dissociating verbal and spatial working memory using PET. Cereb. Cortex 6, 11–20 (1996).

    Article  CAS  PubMed  Google Scholar 

  138. DeRenzi, E. & Nichelli, P. Verbal and non-verbal short-term memory impairment following hemispheric damage. Cortex 11, 341–353 (1975).

    Article  CAS  Google Scholar 

  139. Hanley, J. R., Young, A. W. & Pearson, N. A. Impairment of the visuospatial sketch pad. Q. J. Exp. Psychol. 43A, 101–125 (1991).

    Article  Google Scholar 

  140. Kosslyn, S. M. et al. Visual mental imagery activates topographically organised cortex: PET investigations. J. Cogn. Neurosci. 5, 263–287 (1993).

    Article  CAS  PubMed  Google Scholar 

  141. Jonides, J. et al. Spatial working memory in humans as revealed by PET. Nature 363, 623–625 (1993).

    Article  CAS  PubMed  Google Scholar 

  142. Awh, E., Jonides, J. & Reuter-Lorenz, P. A. Rehearsal in spatial working memory. J. Exp. Psychol. Hum. Percept. Perf. 24, 780–790 (1998).

    Article  CAS  Google Scholar 

  143. Wilson, F. A. W. Scalaidhe, S. & Goldman-Rakic, S. Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260, 1955–1958 (1993).

    Article  CAS  PubMed  Google Scholar 

  144. Levin, D. N. Warach, J. & Farah M. J. Two visual systems in mental imagery: dissociation of 'what' and 'where' in imagery disorders due to bilateral posterior cerebral lesions. Neurology 35, 1010–1018 (1985).

    Article  Google Scholar 

  145. Owen, A. M. The functional organisation of working memory processes within the human lateral frontal cortex: the contribution of functional neuroimaging. Eur. J. Neurosci. 9, 1329–1339 (1997).

    Article  CAS  PubMed  Google Scholar 

  146. Stuss, D. T. & Knight, R. T. Principles of Frontal Lobe Function (Oxford Univ. Press, New York, 2002).

    Book  Google Scholar 

  147. Braver, T. S. et al. A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 5, 49–62 (1997).

    Article  CAS  PubMed  Google Scholar 

  148. Cohen, J. D. et al. Temporal dynamics of brain activation during a working memory task. Nature 386, 604–608 (1997).

    Article  CAS  PubMed  Google Scholar 

  149. Frith, C. D., Friston, K. J., Liddle, P. F. & Frackowiak, R. S. J. Willed action in the prefrontal cortex in man: a study with PET. Proc. R. Soc. Lond. B 244, 241–246 (1991).

    Article  CAS  Google Scholar 

  150. Jahanshahi, M., Dirnberger, G., Fuller, R. & Frith, C. D. The role of the dorsolateral prefrontal cortex in random number generation: a study with positron emission tomography. Neuroimage 12, 713–725 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Baddeley, A. D. Emslie, H., Kolodny, J. & Duncan, J. Random generation and the executive control of working memory. Q. J. Exp. Psychol. 51A, 818–852 (1998).

    Google Scholar 

  152. Duncan, J. & Owen, A. M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483 (2000). A meta-analysis of neuroimaging studies of attentional control that argues for the dependence of diverse executive processes on a limited anatomical region of the right frontal lobe.

    Article  CAS  PubMed  Google Scholar 

  153. D'Esposito, M. et al. The neural basis of the central executive system of working memory. Nature 378, 279–281 (1995).

    Article  CAS  PubMed  Google Scholar 

  154. Klingberg, T. Concurrent performance of two working memory tasks: potential mechanisms of interference. Cereb. Cortex 8, 593–601 (1998).

    Article  CAS  PubMed  Google Scholar 

  155. Fletcher, T. C. et al. Brain systems for encoding and retrieval of auditory-verbal memory: an in vivo study in humans. Brain 118, 401–416 (1995).

    Article  PubMed  Google Scholar 

  156. Goldberg, T. E. et al. Uncoupling cognitive workload and prefrontal cortical physiology: a PET rCBF study. Neuroimage 7, 296–303 (1998).

    Article  CAS  PubMed  Google Scholar 

  157. Damasio, A. R. Descarte's Error: Emotion, Reason, and the Human Brain (Putnam, New York, 1994).

    Google Scholar 

  158. Hume, D. An Enquiry Concerning Human Understanding (Hackett, Indianapolis, 1772/1993).

    Google Scholar 

  159. Lewin, K. Field Theory in Social Science (Harper, New York, 1951).

    Google Scholar 

  160. Kennard, C. & Swash, M. (Eds) Hierarchies in Neurology: reappraisal of Jacksonian Concept (Springer, Berlin, 1989).

    Book  Google Scholar 

  161. Craik, K. J. W. The Nature of Explanation (Cambridge Univ. Press, London, 1943).

    Google Scholar 

  162. Broadbent, D. E. Levels, hierarchies and the locus of control. Q. J. Exp. Psychol. 29, 181–201 (1977).

    Article  Google Scholar 

  163. Frith, C. D., Blakemore, S. J. & Wolpert, D. M. Abnormalities in the awareness and control of action. Phil. Trans. R. Soc. Lond. B 355, 1771–1788 (2000). A stimulating attempt to provide an account of the control of action based on a range of experimental phenomena and neuropsychological deficits. It makes a potentially important case for the possible extension of a model of motor control to the more general control of action and behaviour.

    Article  CAS  Google Scholar 

  164. Daneman, M. & Carpenter, A. Individual differences in working memory and reading. J. Verbal Learn. Verbal Behav. 19, 450–466 (1980).

    Article  Google Scholar 

  165. Daneman, M. & Merikle, M. Working memory and language comprehension: A meta-analysis. Psychon. Bull. Rev. 3, 422–433 (1996).

    Article  CAS  PubMed  Google Scholar 

  166. Turner, M. L. & Engle, R. W. Is working memory capacity task-dependent? J. Mem. Lang. 28, 127–154 (1989).

    Article  Google Scholar 

  167. Bayliss, D. M., Jarrold, C., Gunn, D. M. & Baddeley, A. D. The complexities of complex span: Explaining individual differences in working memory in children and adults. J. Exp. Psychol. Gen. 132, 71–92 (2003).

    Article  PubMed  Google Scholar 

  168. Ormrod, J. E. & Cochran, K. F. Relationship of verbal ability and working memory to spelling achievement and learning to spell. Reading Res. Instruction 28, 33–43 (1988).

    Article  Google Scholar 

  169. Kyllonen, C. & Stephens, D. L. Cognitive abilities as the determinants of success in acquiring logic skills. Learn. Individual Diff. 2, 129–160 (1990).

    Article  Google Scholar 

  170. Kiewra, K. A. & Benton, S. L. The relationship between information processing ability and note-taking. Contemp. Edu. Psychol. 13, 3–44 (1988).

    Google Scholar 

  171. Engle, R. W. Carullo, J. J. & Collins, K. W. Individual differences in working memory for comprehension and following directions. J. Edu. Res. 84, 253–262 (1991).

    Article  Google Scholar 

  172. Kyllonen, C. & Christal, R. E. Reasoning ability is (little more than) working memory capacity. Intelligence 14, 389–433 (1990).

    Article  Google Scholar 

  173. Engle, R. W. Kane, M. J. & Tuholski, S. W. in Models of Working Memory: Mechanisms of Active Maintenance and Executive Control (eds Miyake, A. & Shah, P.) 102–134 (Cambridge Univ. Press, Cambridge, 1999).

    Book  Google Scholar 

  174. Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P. & Heggarty, M. How are visuo-spatial working memory, executive functioning, and spatial abilities related: latent-variable analysis. J. Exp. Psychol. Gen. 130, 621–640 (2001).

    Article  PubMed  Google Scholar 

  175. Miyake, A. et al. The unity and diversity of executive functions and their contributions to complex 'frontal lobe' tasks: a latent variable analysis. Cogn. Psychol. 41, 49–100 (2000). A clear account of the application of the statistical technique of latent variable analysis to the analysis of executive processes in working memory.

    Article  CAS  PubMed  Google Scholar 

  176. Kane, M. J. & Engle, R. W. The role of prefrontal cortex in working-memory capacity, executive attention and general fluid intelligence: an individual differences perspective. Psychon. Bull. Rev. 4, 637–671 (2002).

    Article  Google Scholar 

  177. Spearman, C. The Abilities of Man (Macmillan, London, 1927).

    Google Scholar 

  178. Thurstone, L. L. Primary Mental Abilities (Univ. Chicago Press, Chicago, 1938).

    Google Scholar 

  179. Carroll, J. B. Human Cognitive Abilities (Cambridge Univ. Press, Cambridge, 1993).

    Book  Google Scholar 

  180. Herrnstein, R. J. & Murray, C. The Bell Curve: Intelligence and Class Structure in American Life (Free Press, New York, 1994).

    Google Scholar 

  181. Kamin, L. J. Intelligence: The Battle for the Mind (H. J. Eysenck versus Leon Kamin) (Macmillan, London, 1981).

    Google Scholar 

  182. Brooks, L. R. Spatial and verbal components in the act of recall. Can. J. Psychol. 22, 349–368 (1968).

    Article  Google Scholar 

  183. Martin, J. H. Neuroanatomy: Text and Atlas 2nd edn (Appleton & Lange, Stamford, Connecticut, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

MIT Encyclopedia of Cognitive Sciences

neural basis of working memory

working memory

Glossary

BRODMANN AREAS

(BA). Korbinian Brodmann (1868–1918) was an anatomist who divided the cerebral cortex into numbered subdivisions on the basis of cell arrangements, types and staining properties (for example, the dorsolateral prefrontal cortex contains subdivisions, including BA 46, BA 9 and others). Modern derivatives of his maps are commonly used as the reference system for discussion of brain-imaging findings.

ANARTHRIC

Unable to speak because of defective articulation.

DYSPRAXIC

Having an impairment of the ability to perform certain voluntary movements, often including speech.

CONATIVE PSYCHOLOGY

McDougall proposed the term 'conative' to denote the activity of mental striving or the will, as opposed to cognitive and affective or emotional processes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baddeley, A. Working memory: looking back and looking forward. Nat Rev Neurosci 4, 829–839 (2003). https://doi.org/10.1038/nrn1201

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1201

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing