Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Ray Tracing Harmonic Functions

Published: 19 July 2024 Publication History

Abstract

Sphere tracing is a fast and high-quality method for visualizing surfaces encoded by signed distance functions (SDFs). We introduce a similar method for a completely different class of surfaces encoded by harmonic functions, opening up rich new possibilities for visual computing. Our starting point is similar in spirit to sphere tracing: using conservative Harnack bounds on the growth of harmonic functions, we develop a Harnack tracing algorithm for visualizing level sets of harmonic functions, including those that are angle-valued and exhibit singularities. The method takes much larger steps than naïve ray marching, avoids numerical issues common to generic root finding methods and, like sphere tracing, needs only perform pointwise evaluation of the function at each step. For many use cases, the method is fast enough to run real time in a shader program. We use it to visualize smooth surfaces directly from point clouds (via Poisson surface reconstruction) or polygon soup (via generalized winding numbers) without linear solves or mesh extraction. We also use it to visualize nonplanar polygons (possibly with holes), surfaces from architectural geometry, mesh "exoskeletons", and key mathematical objects including knots, links, spherical harmonics, and Riemann surfaces. Finally we show that, at least in theory, Harnack tracing provides an alternative mechanism for visualizing arbitrary implicit surfaces.

Supplementary Material

ZIP File (papers_786.zip)
supplemental

References

[1]
Anders Adamson and Marc Alexa. 2003. Approximating and intersecting surfaces from points. In Symposium on Geometry Processing. 230--239.
[2]
Emil Adiels, Mats Ander, and Chris JK Williams. 2022. The architectural application of shells whose boundaries subtend a constant solid angle. arXiv preprint (2022), 21 pages. https://arxiv.org/pdf/2212.05913.pdf
[3]
Arthur Appel. 1968. Some techniques for shading machine renderings of solids. In Proceedings of the April 30--May 2, 1968, Spring Joint Computer Conference. ACM, 37--45.
[4]
Sheldon Axler, Paul Bourdon, and Ramey Wade. 2013. Harmonic Function Theory (2nd ed.). Graduate Texts in Mathematics, Vol. 137. Springer.
[5]
Melike Aydinlilar and Cedric Zanni. 2021. Fast Ray Tracing of Scale-Invariant Integral Surfaces. Computer Graphics Forum 40, 6, 117--134.
[6]
Ghada Bakbouk and Pieter Peers. 2023. Mean Value Caching for Walk on Spheres. In Eurographics Symposium on Rendering. The Eurographics Association, 10 pages.
[7]
Csaba Bálint and Gábor Valasek. 2018. Accelerating Sphere Tracing. In Eurographics (Short Papers). 29--32.
[8]
Sai Praveen Bangaru, Michaël Gharbi, Fujun Luan, Tzu-Mao Li, Kalyan Sunkavalli, Milos Hasan, Sai Bi, Zexiang Xu, Gilbert Bernstein, and Fredo Durand. 2022. Differentiable Rendering of Neural SDFs through Reparameterization. In SIGGRAPH Asia 2022 Conference Papers. 1--9.
[9]
Gavin Barill, Neil G. Dickson, Ryan Schmidt, David I. W. Levin, and Alec Jacobson. 2018. Fast Winding Numbers for Soups and Clouds. ACM Transactions on Graphics (TOG) 37, 4, Article 43 (July 2018), 12 pages.
[10]
Alan H. Barr. 1981. Superquadrics and angle-preserving transformations. IEEE Computer Graphics and Applications 1, 1 (1981), 11--23.
[11]
Jack Binysh and Gareth P Alexander. 2018. Maxwell's theory of solid angle and the construction of knotted fields. Journal of Physics A: Mathematical and Theoretical 51, 38 (2018), 21 pages.
[12]
Astrid Bunge, Marc Alexa, and Mario Botsch. 2023. Discrete Laplacians for General Polygonal and Polyhedral Meshes. In SIGGRAPH Asia 2023 Courses. 1--49.
[13]
Astrid Bunge, Philipp Herholz, Misha Kazhdan, and Mario Botsch. 2020. Polygon Laplacian made simple. Computer Graphics Forum 39, 2 (2020), 303--313.
[14]
Edwin E. Catmull and James H. Clark. 1978. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10, 6 (1978), 350--355.
[15]
Albert Chern and Sadashige Ishida. 2023. Area formula for spherical polygons via prequantization. arXiv preprint (2023), 12 pages. https://arxiv.org/pdf/2303.14555.pdf
[16]
Keenan Crane. 2005. Ray Tracing Quaternion Julia Sets on the GPU. https://www.cs.cmu.edu/~kmcrane/Projects/QuaternionJulia/.
[17]
Keenan Crane. 2012. Graph of Harnack's inequality. https://commons.wikimedia.org/w/index.php?title=File:Graph_of_Harnack%27s_inequality.png&oldid=600951383 [Online; accessed 27-March-2024].
[18]
Olaf Diegel. 2021. Design for Additive Manufacturing: A workflow for a metal AM heat exchanger using nTopology. Metal AM 7, 2 (2021), 185--189.
[19]
Bruce E Edwards. 1982. Implementation of a ray-tracing algorithm for rendering superquadric solids. Rensselaer Polytechnic Institute, Troy, NY.
[20]
Michael S. Floater. 2003. Mean Value Cordinates. Computer Aided Geometric Design 20, 1 (2003), 19--27.
[21]
Blender Foundation and Community. 2023. Blender 4.0. http://www.blender.org
[22]
Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman, Patrick Alken, Michael Booth, and Fabrice Rossi. 2009. GNU Scientific Library Reference Manual (3rd ed.). Network Theory Ltd.
[23]
Eric Galin, Eric Guérin, Axel Paris, and Adrien Peytavie. 2020. Segment tracing using local Lipschitz bounds. Computer Graphics Forum 39, 2 (2020), 545--554.
[24]
Fernando de Goes, Siome Goldenstein, Mathieu Desbrun, and Luiz Velho. 2011. Exoskeleton: Curve Network Abstraction for 3D Shapes. Computers & Graphics 35, 1 (Feb. 2011), 112--121.
[25]
Robert A. Goldstein and Roger Nagel. 1971. 3-D Visual simulation. Simulation 16, 1 (1971), 25--31.
[26]
Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. 2020. Implicit Geometric Regularization for Learning Shapes. In Proceedings of the 37th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 119). PMLR, 3789--3799. https://proceedings.mlr.press/v119/gropp20a.html
[27]
Markus Hadwiger, Christian Sigg, Henning Scharsach, Khatja Bühler, and Markus Gross. 2005. Real-time ray-casting and advanced shading of discrete isosurfaces. Computer Graphics Forum 24, 3 (2005), 303--312.
[28]
Pat Hanrahan. 1983. Ray Tracing Algebraic Surfaces. SIGGRAPH Computer Graphics 17, 3 (July 1983), 83--90.
[29]
Pat Hanrahan. 1989. A Survey of Ray-Surface Intersection Algorithms. In An Introduction to Ray Tracing, Andrew S. Glassner (Ed.). Academic Press, 79--119.
[30]
Axel Harnack. 1887. Die Grundlagen der Theorie des logarithmischen Potentiales und der eindeutigen Potentialfunktion in der Ebene. VG Teubner.
[31]
John C. Hart. 1993a. Ray Tracing Implicit Surfaces. In Modeling, Visualizing, and Animating Implicit Surfaces (Siggraph 1993 Courses).
[32]
John C Hart. 1993b. Sphere tracing: Simple robust antialiased rendering of distance-based implicit surfaces. In SIGGRAPH, Vol. 93. 1--11.
[33]
John C Hart. 1996. Sphere tracing: A geometric method for the antialiased ray tracing of implicit surfaces. The Visual Computer 12, 10 (1996), 527--545.
[34]
John C Hart and Thomas A DeFanti. 1991. Efficient antialiased rendering of 3-D linear fractals. In Proceedings of the 18th annual conference on Computer graphics and interactive techniques. 91--100.
[35]
John C. Hart, Daniel J. Sandin, and Louis H. Kauffman. 1989. Ray tracing deterministic 3-D fractals. SIGGRAPH Computer Graphics 23, 3 (July 1989), 289--296.
[36]
Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013. Robust inside-outside segmentation using generalized winding numbers. ACM Transactions on Graphics (TOG) 32, 4 (July 2013), 1--12.
[37]
Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker. 2020. SDFDiff: Differentiable rendering of signed distance fields for 3d shape optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1251--1261.
[38]
Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Harmonic Coordinates for Character Articulation. ACM Transactions on Graphics (TOG) 26, 3 (July 2007).
[39]
Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. 2002. Dual contouring of Hermite data. ACM Transactions on Graphics (TOG) 21, 3 (July 2002), 339--346.
[40]
Devendra Kalra and Alan H. Barr. 1989. Guaranteed Ray Intersections with Implicit Surfaces. SIGGRAPH Computer Graphics 23, 3 (July 1989), 297--306.
[41]
Moritz Kassmann. 2007. Harnack Inequalities: an Introduction. Boundary Value Problems 2007 (2007), 1--21.
[42]
Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson Surface Reconstruction. In Symposium on Geometry Processing. Eurographics Association, 61--70.
[43]
Matthew J. Keeter. 2020. Massively parallel rendering of complex closed-form implicit surfaces. ACM Transactions on Graphics (TOG) 39, 4, Article 141 (Aug. 2020), 10 pages.
[44]
Benjamin Keinert, Henry Schäfer, Johann Korndörfer, Urs Ganse, and Marc Stamminger. 2014. Enhanced Sphere Tracing. In Smart Tools and Apps for Graphics. The Eurographics Association.
[45]
Alois Knoll. 2007. A survey of implicit surface rendering methods, and a proposal for a common sampling framework. In Proceedings of the 2nd IRTG Workshop (GI Lecture Notes in Informatics).
[46]
Aaron Knoll, Younis Hijazi, Andrew Kensler, Mathias Schott, Charles Hansen, and Hans Hagen. 2009. Fast ray tracing of arbitrary implicit surfaces with interval and affine arithmetic. Computer Graphics Forum 28, 1 (2009), 26--40.
[47]
Leif P Kobbelt, Katja Daubert, and Hans-Peter Seidel. 1998. Ray tracing of subdivision surfaces. In Eurographics Workshop on Rendering Techniques. Springer, 69--80.
[48]
John M. Lee. 2018. Introduction to Riemannian Manifolds (2nd ed.). Graduate Texts in Mathematics, Vol. 176. Springer.
[49]
Adrien Marie Legendre. 1817. Éléments de géometrie (11th ed.). translated as: Elements of Geometry (1819). Cambridge University Press.
[50]
Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc Pollefeys, and Zhaopeng Cui. 2020. Dist: Rendering deep implicit signed distance function with differentiable sphere tracing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019--2028.
[51]
William E. Lorensen and Harvey E. Cline. 1987. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. SIGGRAPH Computer Graphics 21, 4 (Aug. 1987), 163--169.
[52]
Zoë Marschner, Silvia Sellán, Hsueh-Ti Derek Liu, and Alec Jacobson. 2023. Constructive Solid Geometry on Neural Signed Distance Fields. In SIGGRAPH Asia 2023 Conference Papers. ACM, Article 121, 12 pages.
[53]
Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas. 2023. Boundary Value Caching for Walk on Spheres. ACM Transactions on Graphics (TOG) 42, 4 (July 2023).
[54]
Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas. 2024. Walkin' Robin: Walk on Stars with Robin Boundary Conditions. ACM Transactions on Graphics (TOG) 43, 41 (2024).
[55]
Mervin E. Muller. 1956. Some Continuous Monte Carlo Methods for the Dirichlet Problem. Annals of Mathematical Statistics 27, 3 (1956), 569--589.
[56]
Adriaan van Oosterom and Jan Strackee. 1983. The solid angle of a plane triangle. IEEE Transactions on Biomedical Engineering BME-30, 2 (1983), 125--126.
[57]
Alexandrina Orzan, Adrien Bousseau, Holger Winnemöller, Pascal Barla, Joëlle Thollot, and David Salesin. 2008. Diffusion curves: a vector representation for smooth-shaded images. ACM Transactions on Graphics (TOG) 27, 3 (Aug. 2008), 1--8.
[58]
David Palmer, Dmitriy Smirnov, Stephanie Wang, Albert Chern, and Justin Solomon. 2022. DeepCurrents: Learning Implicit Representations of Shapes with Boundaries. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 18644--18654.
[59]
Frank Paxton. 1959. Solid angle calculation for a circular disk. Review of Scientific Instruments 30, 4 (1959), 254--258.
[60]
Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2023. Physically based rendering: From theory to implementation (4th ed.). Morgan Kaufmann. https://www.pbrt.org/
[61]
Daniel Piker. 2021. Some examples of periodic isosurfacing. https://twitter.com/KangarooPhysics/status/1457802855994191877.
[62]
Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and their conjugates. Experimental mathematics 2, 1 (1993), 15--36.
[63]
Inigo Quilez. 2008. Raymarching Signed Distance Fields. https://iquilezles.org/articles/raymarchingdf/. Accessed: 2023-06-20.
[64]
Inigo Quilez. 2015. Normals for an SDF. https://iquilezles.org/articles/normalsSDF/. Accessed: 2023-06-20.
[65]
Inigo Quilez and Pol Jeremias. 2013. ShaderToy. https://www.shadertoy.com/. Accessed: 2024-01-21.
[66]
Damien Rioux-Lavoie, Ryusuke Sugimoto, Tümay Özdemir, Naoharu H. Shimada, Christopher Batty, Derek Nowrouzezahrai, and Toshiya Hachisuka. 2022. A Monte Carlo Method for Fluid Simulation. ACM Transactions on Graphics (TOG) 41, 6, Article 240 (Nov. 2022), 16 pages.
[67]
Scott D. Roth. 1982. Ray casting for modeling solids. Computer Graphics and Image Processing 18, 2 (1982), 109--144.
[68]
Robert E. Rothe. 1969. The solid angle at a point subtended by a circle. Journal of the Franklin Inst. 287, 6 (1969), 515--521.
[69]
Rohan Sawhney. 2021. FCPW: Fastest Closest Points in the West. https://github.com/rohan-sawhney/fcpw
[70]
Rohan Sawhney and Keenan Crane. 2020. Monte Carlo Geometry Processing: A Grid-Free Approach to PDE-Based Methods on Volumetric Domains. ACM Transactions on Graphics (TOG) 39, 4 (Aug. 2020).
[71]
Rohan Sawhney, Bailey Miller, Ioannis Gkioulekas, and Keenan Crane. 2023. Walk on Stars: A Grid-Free Monte Carlo Method for PDEs with Neumann Boundary Conditions. ACM Transactions on Graphics (TOG) 42, 4 (2023).
[72]
Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. 2022. Grid-Free Monte Carlo for PDEs with Spatially Varying Coefficients. ACM Transactions on Graphics (TOG) 41, 4 (July 2022).
[73]
Dario Seyb, Alec Jacobson, Derek Nowrouzezahrai, and Wojciech Jarosz. 2019. Nonlinear sphere tracing for rendering deformed signed distance fields. ACM Transactions on Graphics (TOG) 38, 6, Article 229 (Nov. 2019), 12 pages.
[74]
Nicholas Sharp and Alec Jacobson. 2022. Spelunking the Deep: Guaranteed Queries on General Neural Implicit Surfaces via Range Analysis. ACM Transactions on Graphics (TOG) 41, 4, Article 107 (July 2022), 16 pages.
[75]
Tianchang Shen, Jacob Munkberg, Jon Hasselgren, Kangxue Yin, Zian Wang, Wenzheng Chen, Zan Gojcic, Sanja Fidler, Nicholas Sharp, and Jun Gao. 2023. Flexible isosurface extraction for gradient-based mesh optimization. ACM Transactions on Graphics (TOG) 42, 4 (July 2023), 1--16.
[76]
William R. Smythe. 1989. Static and Dynamic Electricity (3rd ed.). Taylor & Francis. revised printing.
[77]
Ryusuke Sugimoto, Terry Chen, Yiti Jiang, Christopher Batty, and Toshiya Hachisuka. 2023. A Practical Walk-on-Boundary Method for Boundary Value Problems. ACM Transactions on Graphics (TOG) 42, 4, Article 81 (July 2023), 16 pages.
[78]
Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2021. Neural geometric level of detail: Real-time rendering with implicit 3D shapes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 11358--11367.
[79]
Towaki Takikawa, Shunsuke Saito, James Tompkin, Vincent Sitzmann, Srinath Sridhar, Or Litany, and Alex Yu. 2023. Neural Fields for Visual Computing. In ACM SIGGRAPH 2023 Courses.
[80]
Haruyuki Tatsumi, Eiji Takaoki, Koichi Omura, and Hisao Fujita. 1990. A new method for three-dimensional reconstruction from serial sections by computer graphics using "meta-balls": Reconstruction of "hepatoskeletal system" formed by Ito cells in the cod liver. Computers and Biomedical Research 23, 1 (1990), 37--45.
[81]
Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2022. Differentiable Signed Distance Function Rendering. ACM Transactions on Graphics (TOG) 41, 4 (July 2022), 1--18.
[82]
John Wallis. 1659. Tractatus de Sectionibus Conicis.
[83]
Stephanie Wang and Albert Chern. 2021. Computing minimal surfaces with differential forms. ACM Transactions on Graphics (TOG) 40, 4 (July 2021), 1--14.
[84]
Jarke J. van Wijk. 1985. Ray tracing objects defined by sweeping a sphere. Computers & Graphics 9, 3 (1985), 283--290.
[85]
Jarke J. van Wijk and Arjeh M. Cohen. 2006. Visualization of Seifert Surfaces. IEEE IEEE Transactions on Visualization and Computer Graphics 12, 4 (2006), 485--496.
[86]
Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. 2022. Neural fields in visual computing and beyond. Computer Graphics Forum 41, 2 (2022), 641--676.
[87]
Ekrem Fatih Yılmazer, Delio Vicini, and Wenzel Jakob. 2022. Solving Inverse PDE Problems using Grid-Free Monte Carlo Estimators. arXiv preprint (2022). https://arxiv.org/pdf/2208.02114.pdf

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 43, Issue 4
July 2024
1774 pages
EISSN:1557-7368
DOI:10.1145/3675116
Issue’s Table of Contents
This work is licensed under a Creative Commons Attribution International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 19 July 2024
Published in TOG Volume 43, Issue 4

Check for updates

Author Tags

  1. ray tracing
  2. sphere tracing
  3. implicit surfaces
  4. harmonic function
  5. harnack inequality

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 319
    Total Downloads
  • Downloads (Last 12 months)319
  • Downloads (Last 6 weeks)84
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media