Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion
Abstract
:1. Introduction
2. IMU-Based Human Motion Tracking
2.1. Reviews on Wearable Motion Tracking
2.2. Introductory Concepts to IHMT Methods
2.2.1. Kinematics and Constraints
Kinematics Representation
Constraints
2.2.2. Sensor Fusion Technique
2.2.3. IHMT Common Issues
Drift
Magnetic Disturbances
Calibration
2.2.4. Methods’ Assessment
2.3. Survey of IHMT Methods
2.3.1. Generic Limb Orientation
2.3.2. Lower Limbs Tracking
2.3.3. Upper Limbs Tracking
2.3.4. Full Body Motion Tracking
3. Selected Methods
3.1. Method 1
3.2. Method 2
3.3. Method 3
3.4. Method 4
3.5. Method 5
4. Comparison
4.1. Experimental Setup
4.1.1. Data Alignment for the Comparison
4.1.2. Performance Indices
- Accuracy:
- Correlation:
4.2. Experimental Results
4.3. Discussion
4.3.1. Accuracy
4.3.2. Correlation
4.3.3. Fast Motion
4.3.4. Sources of Error
- Knowlegde of human parameters (i.e., arm length). This source of error can be minimized by including human parameters in the estimation e.g., [51]
- Body to mIMUs calibration. Although the calibration procedure that we carried out suffices to determine the orientation of the mIMUs, uncertainties in the position of mIMUs with respect to their parent is still subject to assumptions. Also the effects of this source of error can be reduced by a proper calibration and by taking into account the sensor poses in the sensor fusion technique.
- Time alignment of OMC data with mIMU data. OMC and mIMU-based data are manually done based on a known motion from a steady condition. However, the effects of misalignment are much smaller than the error we have reported.
- Preprocessing of data. Here we tested only the reported algorithm, not considering possible filtering on mIMU data. For example, having a hard magnetic calibration, it would be possible to handle bad data with distorted magnetic field.
5. Conclusions
Conflicts of Interest
Appendix A. Summary of Presented Methods
Appendix A.1. Description of Abbreviations
Ref. | Year | Body | Application | Target | Focus | Sensors | Kinematics & Constraints | Parameters | Sensor Fusion Technique | Calibration | Validation | Measure | RMSE | Correlation | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[30] | 1999 | attitude | computer graphics | link ori | method | 1 acc, 1 gyro, 1 mag | quat ori | CF gain | CF, GN opt | no | 1, tilt table | roll | 1.0 | - | initial condition study, 120 s valid trial, lin acc negl |
[31] | 2001 | attitude | computer graphics | link ori | method | 1 acc, 1 gyro, 1 mag | quat ori | CF gain | CF, GN opt | - | 1, tilt table | quat compar | - | - | initial condition study, 25 s valid trial |
[10] | 2004 | attitude | computer graphics | link ori | method | 1 acc, 1 gyro, 1 mag | rot mat | CF gain | CF | - | 1, robot EE | roll, pitch, yaw | - | 0.7–0.87 | drift, 12s valid trial, omni phantom |
[32] | 2004 | upper limbs | - |
| method | 2 acc, 2 gyro, 2 mag | rot mat | link len, KF params | KF, QUEST | - | 1, hor line vert line | wrist pos, shoulder abd, elbow fle | - | - | lin acc negl, sens align link, sens sitting link, 25s valid trial, show plot |
[57] | 2004 | full body | teleoperation | link ori | application | 14 acc, 14 gyro, 14 mag | kinematic chain, quat ori | CF gain | CF like | - | robot EE | - | - | - | sens sitting link, plot traj, valid teleop robot |
[95] | 2005 | upper limbs, lower limbs | medical | link ori | method | 1 acc, 1 gyro | rot mat | KF params | KF | static | 2, OMC |
|
| - | drift modeled, sens align link |
[84] | 2005 | attitude | - | link ori | mag comp | 1 acc, 1 gyro, 1 mag | rot mat | KF params | KF, lin acc err, mag err | static | 1, box, 1, OMC |
|
| - | linear acc noise, |
[75] | 2005 | attitude | - | link ori | method | 1 acc, 1 gyro, 1 mag | quat ori | CF gain | CF | - | mech platform | link ori | - | - | bias est, 60s trial, show plot |
[36] | 2005 | lower limbs | medical: locomotion |
| method | 1 acc, 1 gyro | rot mat | - | acc double int |
| 1, OMC |
|
| - | sens sitting link, sens align link, 4 s localization valid tasks |
[88] | 2006 | lower limbs | - | shank ori | method | 2 2d acc, 1 gyro | knee hinge | CF gain | CF like | static, n pose like | 8, OMC |
|
| 0.999 | motion limited sagittal |
[96] | 2006 | lower limbs | medical: knee function analysis post cruciate ligament lesion |
| application | 2 gyro | - | - | gyro int | - | 5, US |
|
| - | target ROM, 30m walk valid trial |
[97] | 2006 | attitude | computer graphics | link ori | method | 1 acc, 1 gyro, 1 mag | quat ori | KF params | EKF, QUEST | - | 1, tilt table |
| 2.0–9.0 | - | initial condition study, 25 s valid trial |
[50] | 2006 | upper limbs | computer graphics |
| method | 1 2d acc, 1 1d gyro, mech track wrist pos | kinematic chain, quat ori | link len, KF params | KF, GN opt | - | 1, OMC |
| <OMC prec | - | sens align link, sens sitting link, bias est |
[38] | 2006 | attitude | medical | link ori | method | 1 acc, 1 gyro, 1 mag | quat ori | KF params | EKF | - | 1, OMC |
|
| - | adaptive covariance, bias est, ZUPT like sens inline calib, 120s free movements valid trial |
[54] | 2007 | upper limbs | medical: monitoring, neuromuscular disorders | elbow angle | method | 2 acc, 2 gyro | elbow hinge | KF params | KF | dynamic | 1, OMC | elbow fle | elbow fle 8–25 | - | static plus pro mov calib, variation R, 130s daily activities valid trial |
[99] | 2007 | full body | - |
| method |
| rot mat | link len, KF params | INS, EKF | - | 6, OMC |
|
| - | sens align link, sens sitting link, 30s walking valid trial |
[14] | 2007 | full body | computer graphics, sport |
| method | 18 acc, 18 gyro, 18 US | kinematic chain, quat ori | link len, KF params | EKF | static, rest pose | 1, OMC |
|
| - | sens sitting link, 30s valid trials, drift observed |
[92] | 2008 | lower limbs | medical |
| calibration | 2 gyro | - | - | gyro int | static, n pose, dynamic hip abd | 10, MAG |
|
|
| 30m walk valid trial |
[37] | 2008 | lower limbs | medical: gait |
| calibration | 2 acc, 2 gyro, 2 mag | - | - | - | static | 6, OMC |
|
| - | calibration from 6 participants |
[48] | 2008 | upper limbs | medical |
| calibration | 4 acc, 4 gyro, 4 mag | - | - | - | static | 1, OMC |
| 0.2—3.2 | - | |
[43] | 2008 | attitude | - | link ori | method | 1 acc, 1 mag | quat ori | FQA | - | 1, tilt table | roll, pitch, yaw | - | - | sens align to link | |
[76] | 2008 | attitude | - | link ori | method | 1 acc, 1 gyro, 1 mag | quat ori | CF gain | CF | - | robot EE | link ori | - | - | bias est, 60 s valid trial, show plot |
[63] | 2009 | lower limbs | - |
| method | 2 acc, 2 gyro | knee hinge | KF params | KF | static, n pose like | 7, OMC |
|
| - | |
[98] | 2009 | lower limbs | - |
| method | 4 acc, 4 gyro | knee hinge | rot acc | - | 8, OMC |
|
| 0.91 | limited motion to 80 deg, low speed valid trial | |
[103] | 2009 | lower limbs | medical |
| calibration | 2 gyro | - | - | gyro int | dynamic | 8, MAG |
|
|
| |
[64] | 2009 | full body | computer graphics |
| calibration, application | 17 acc, 17 gyro, 17 mag |
| link len, KF params | KF | static, t pose, dynamic, axis rot, closed loop calib | - | - | - | - | three steps calib, closed loop calib |
[94] | 2010 | lower limbs | medical: monitoring cerebral palsy |
| calibration | 8 acc, 8 gyro, 8 mag | - | - | - | static | 9, OMC, 2, manual |
| 1.4-1.8 | - | manual measurement therapist |
[58] | 2010 | full body | computer graphics |
| method | 9 acc, 9 gyro, 9 mag | kinematic chain, quat ori | link len, sens pos, CF gain | CF, lin acc err | - | sim sens meas |
|
| 0.939 0.999 | sens align link, sens sitting link, walking gait, running gait |
[112] | 2010 | pose | - |
| mag comp |
| rot mat | - | INS, EKF, mag sto model | - | static pos | - | - | - | |
[114] | 2010 | full body | sport |
| application | 16 acc, 16 gyro, 16 mag | - | - | - | - | 2, GNSS |
|
| - | 35 s pendulum valid trial, entire ski race |
[67] | 2010 | upper limbs | - |
| method | 6 acc, 6 gyro, 6 mag | kinematic chain |
| NR opt, inv kin | - | 1, OMC | wrist pos | wrist pos 5 | - | sens sitting link, sens align link, 180s valid trial, lin acc negl |
[69] | 2010 | pose | localization |
| method | 1 acc, 1 gyro, 1 mag | rot mat | KF params | EKF, INS | - | 1, known path | foot pos | foot pos 450–1350 | - | bias est, lin acc est, ZUPT, ZARU, HDR, 100s valid trial 125m |
[87] | 2010 | upper limbs | - |
| method | 2 acc, 2 gyro, 2 mag | kinematic chain, rot mat | KF params, link len | KF, CF like | - | 8, OMC |
|
|
| sens sitting link, sens align link, const lin acc, const ang vel, sens reloc, 30s square and circle valid trials, 100 s daily activities valid trials |
[80] | 2010 | full body | - | link ori | method | - | - | KF params | KF | - | 1, OMC | - | - | - | lowest point alg, const height ground, lin acc noise, show plot, drift visible, ZUPT |
[18] | 2010 | full body | - |
| method | 1 acc, 1 gyro, 1 mag, mag coil | rot mat | link len, KF params | INS, EKF | - | 6, OMC |
|
| - | sens align link, sens sitting link |
[45] | 2011 | upper limbs | industrial assembly |
| method | 5 acc, 5 gyro, 5 mag, Camera marker | kinematic chain, rot mat |
| EKF |
| 1, OMC | wrist pos | - | - | show plot, visual insp drift, 40 s valid trial |
[41] | 2011 | full body | computer graphics, sport |
| method | 10 acc, 10 gyro, 10 mag |
| link len, OPT params | OPT, VMF dist | static | 1, MVN | 5 links ori | 7.3 | - | sens sitting link, 20 s valid trials |
[59] | 2011 | attitude | medical | link ori | method | 1 acc, 1 gyro, 1 mag | quat ori | CF gain | CF like, OPT | - | 1, OMC |
|
| - | sens sitting link, sens align link, average over 860 s valid trials |
[40] | 2011 | attitude | medical | link ori | method | 1 acc, 1 gyro, 1 mag | quat ori | KF params | EKF | - | 1, OMC |
|
| - | sens sitting link, sens align link, adaptive covariance, bias est, 20 s valid trial, lin acc negl |
[68] | 2011 | full body | medical |
| application | 1 acc, 1 gyro, 1 mag | quat ori | KF params, link len | EKF | static | 1, MTX |
|
| - | sens sitting link, sens align link, adaptive covariance, bias est, 20 s valid trial, lin acc negl |
[49] | 2011 | upper limbs | - |
| method | 2 acc, 2 gyro, 2 mag | kinematic chain, rot mat | KF params, link len | UKF | static, n pose | 1, OMC |
|
|
| DH, sens sitting link, sens fixed to limit soft tissue effect, lin acc negl |
[39] | 2011 | upper limbs | computer graphics |
| method | 2 acc, 2 gyro, 2 mag |
| PF params, link len | PF | static, n pose | 1, OMC |
|
|
| bias est, lin acc negl, sens sitting link, sens fixed to limit soft tissue effect |
[53] | 2011 | upper limbs | - |
| method | 2 acc, 2 gyro, 2 mag | rot mat |
| UKF | - | 1, OMC |
| - |
| DH, sens sitting link, sens align link, 5 s anat movements valid trials |
[100] | 2011 | full body | - | link ori | assessment | 9 acc, 9 gyro, 9 mag | quat ori | - | - | static, 12 poses | 1, OMC |
|
| - | inter MIMU error, intra MIMU error, static valid trial, MTX proprietary KF |
[77] | 2012 | upper limbs | - |
| method | 2 acc, 2 gyro, 2 mag | kinematic chain, rot mat | link len, KF params | UKF | static, n pose | 8, OMC |
|
|
| DH, sens align link, sens sitting link, bias est, calib remove gyro bias, 12 s functional movements valid trials, 12 s daily actitvities trials |
[81] | 2012 | full body | - |
| mag comp | 1 acc, 1 gyro, 1 mag | - | - | OPT | - | mech platform |
|
| - | |
[44] | 2012 | upper limbs | medical: rehabilitation |
| method | 2 acc | quat ori | opt params | NR opt | static | 1, MTX |
|
| - | motion limited sagittal, lin acc negl, sens sitting link, sens align link, static poses calib, 40 s trial sagittal plane |
[66] | 2013 | upper limbs |
| method | n acc, n gyro, n mag | kinematc chain, rot mat | KF params, link len | EKF |
| 1, OMC | hand pos |
| - | DH, any kinematic chain | |
[104] | 2013 | lower limbs | - | link ori, pelvis pos | method | 7 acc, 7 gyro, 7 mag | kinematic chain, quat ori | KF params, link len | KF | - | 1, OMC | pelvis pos |
| - | sens align link, sens sitting link, ZUPT, 20 s hopping valid trial, walking valid trial |
[107] | 2013 | full body |
| application | 21 acc, 21 gyro, 21 mag | kinematc chain, rot mat | KF params, link len | EKF |
| MIMUs comparison | - | - | - | no head | |
[108] | 2013 | upper limbs | ergonomics | link ori, link pos | application | 21 acc, 21 gyro, 21 mag, 2 goniometers | kinematic chain, rot mat | KF params, link len | EKF |
| 12 experts | execution time, RULA class freq | - | - | - |
[47] | 2013 | upper limbs | - |
| method | 3 acc, 3 gyro, 3 mag | kinematic chain, rot mat |
| UKF | static, n pose, t pose | 1, OMC |
|
|
| DH, 160s functional movements valid trials |
[65] | 2013 | lower limbs | localization, training | method | 1 acc, 1 gyro, 1 mag, 1 pressure | kinematic chain, rot mat | KF params, link len, sens pos | KF | static, three walk step poses | 1, OMC, known path |
|
| - | sens sitting link, >40s walking valid trial, >40s jogging valid trial, lin acc noise | |
[42] | 2013 | full body | medical | link ori | method | 1 acc, 1 gyro, 1 mag | quat ori | PF params | PF, VMF dist | static | 1, OMC, robot EE |
|
| - | bias est, sens sitting links, init GN opt acc mag meas |
[60] | 2013 | attitude | - | link ori | method | 1 acc, 1 gyro, 1 mag | quat ori | CF gain, opt params | CF, GN opt | static, dymanic | 1, OMC |
|
| - | adaptive gain CF, bias from calib, bias est, 1000s valid trials, variation mag disturbance static, lin acc negl |
[93] | 2014 | lower limbs | medical: gait |
| method | 6 acc, 6 gyro | knee hinge | CF gain | CF like | dynamic | 1, OMC |
|
| - | walk 10m straight valid trial |
[79] | 2014 | lower limbs | medical:gait, rehabilitation |
| method | 5 acc, 5 gyro | kinematic chain | KF params | EKF | - | 5, OMC |
|
| - | 2 full cycles valid trial |
[70] | 2014 | upper limbs | - |
| method | 2 acc, 2 gyro, 2 mag | kinematic chain | U transform, link len, sens pos | PGM | static, n pose, t pose | 1, OMC |
|
|
| DH, 160s functional movements valid trials |
[55] | 2014 | lower limbs | - |
| method | 17 acc, 17 gyro, 17 mag |
| opt steps, link len | OPT | unspecifieds | 1, OMC | knee ori | - | - | bias est, lin acc negl, covmat allanvar, no sens to hinge and acc model, no real time, 37s walking valid trial, show plot |
[89] | 2014 | lower limbs | - |
| calibration | 7 acc | rot mat | - | TRIAD like | static, n pose, seat pose | 10, OMC |
|
|
| lin acc negl |
[109] | 2015 | full body | medical: physical activity monitoring |
| application | - | kinematic chain, rot mat | KF params, link len | EKF | static, n pose, back bent | - | - | - | - | |
[78] | 2015 | upper limbs | - |
| method | 2 acc, 2 gyro, 2 mag | kinematic chain, rot mat | KF params, link len | UKF | static, n pose | 1, mech |
|
| - | DH, sens align link, sens sitting link, bias est, calib remove gyro bias, ZUPT reduce gyro bias, joint limit, mech synch crosscorrelation, 120s funct mov valid trial, 120 s norm tasks valid trial |
[113] | 2015 | full body | sport |
| method, application | 5 acc, 5 gyro, 5 mag, 5 enc | kinematic chain, rot mat | KF params, link len | UKF | static | 1, OMC |
|
|
| 40s rowing valid trial |
[110] | 2016 | upper limbs | ergonomics |
| application | 3 acc, 3 gyro, 3 mag, EMG | kinematic chain | KF params, link len | UKF | static, n pose, t pose | 10, manual vs auto | - | - | - | |
[90] | 2016 | upper limbs | computer graphics |
| method | 1 acc, 1 gyro, 1 mag, mech track elbow fle | quat ori | KF params, link len | UKF | static, t pose | 1, XsensMVN |
| - | - | lin acc negl, sens align link, sens sitting link, 5.5 s valid trial, show plot |
[86] | 2016 | - | - | link ori | mag comp | 1 acc, 1 gyro, 1 mag | quat ori | KF params | KF | - | 1, OMC | quat ori | quat ori6 | - | 180s walking valid trial, similar to [32] |
[51] | 2016 | upper limbs | - |
| method | 3 acc, 3 gyro, 3 mag |
|
| EKF, OPT | static |
|
|
| - | DH, link len est, sens ori est, motion speed |
[91] | 2016 | full body | - |
| assessment | 12 acc, 12 gyro, 12 mag | - | link len | - | static | 1, OMC |
|
|
| complex vs simple task valid trials, 1920s manual handling valid trial, error due to biomechanics, total err, ISB kinematic model, MVN kinematic model |
[85] | 2016 | attitude | - | link ori | method | 1 acc, 1 gyro, 1 mag | quat ori | KF params | EKF | - | 4, OMC |
|
| - | bias est, lin acc negl, 120 s texting walking valid trial, 120s swinging walking valid trial, 780 s unsupervised walking valid trial |
[105] | 2016 | lower limbs | - | link ori, pelvis pos | method | 7 acc, 7 gyro, 3 UWB | kinematic chain, rot mat | KF params, link len | KF | - | 1, OMC |
|
| - | ZUPT, 100s walking valid trial, 100s jumping valid trial, 100s ascending valid trial |
Abbreviation | Full Name | Categories | Description |
---|---|---|---|
ori | orientation | Target, Kinematics & Constraints, Measure, RMSE, Correlation | orientation of a rigid body |
pos | position | Target, Calibration, Parameters, Validation, Measure, RMSE, Correlation, notes | position of a point of a rigid body |
fle | flexion/extension | Target, Measure, RMSE, Correlation, Sensors, | anatomical term of motion |
abd | abduction/adduction | Target, Measure, RMSE, Correlation, Sensors, | anatomical term of motion |
rot | rotation | Target, Kinematics & Constraints, Measure, Sensor Fusion Technique, Calibration, RMSE, Correlation | rotation related either to rotation about an axis or rotation matrix |
pro | pronation/supination | Target, Measure, RMSE, Correlation, notes | |
ret | retraction/protraction | Target, Measure, RMSE | scapular retraction/protraction |
ele | elevation/depression | Target, Measure, RMSE | scapular elevation/depression |
mag | magnetometer | Focus, Sensors, Sensor Fusion Technique, Measure, notes | referred to either 3 axis (unless otherwise specified) magnetometer or its signal |
comp | compensation | Focus | referred to compensation of magnetic field distortions |
acc | accelerometer | Sensors | referred to either 3 axis (unless otherwise specified) accelerometer or its signal |
gyro | gyroscope | Sensors, Sensor Fusion technique, notes | 3 axis (unless otherwise specified) gyroscope |
xd | - | Sensors | x axes sensor (e.g., 2d acc means biaxial accelerometer) |
mech | mechanical | Sensors, Validation, notes | mechanical is usually referred to either trackers or rigs for validation |
biomech | biomechanical | notes | - |
track | tracker | Sensors | - |
US | ultrasound | Sensors, Validation | ultrasound sensor or motion tracking system based on ultrasound |
exp | exponential | Kinematics & Constraints | exponential maps representation |
seg | segment | Kinematics & Constraints | referred to free segments representation |
CF | Complementary Filter | Parameters, Sensor Fusion Technique, notes | - |
len | length | Parameters, Measures, RMSE, notes | length of human limbs or robotic links |
KF | Kalman Filter | Parameters, Sensor Fusion Technique | - |
EKF | Extended Kalman Filter | Parameters, Sensor Fusion Technique | - |
UKF | Unscented Kalman Filter | Parameters, Sensor Fusion Technique | - |
PF | Particle Filter | Parameters, Sensor Fusion Technique | - |
PGM | probabilistic grpahical models | Sensor Fusion Technique | - |
opt/OPT | optimization | Parameters, Sensor Fusion Technique, notes | - |
params | parameters | Parameters | - |
sens | sensor(s) | Parameters, Validation, notes | Typically referred to position and orientation of the sensor with respect to the link it is attached to. Otherwise referred to simulated measurements of a virtual sensor |
U | unscented | Parameters | - |
INS | inertial navigation system | Sensor Fusion Technique | navigation system based on signals from accelerometers and gyroscopes aimed at estimating position, velocity and orientation of a rigid body. It is typically referred to navigation of aerial vehicles |
GN | Gauss-Newton | referred to Gauss-Newton optimization | |
QUEST | Quaternion estimator algorithm | Sensor Fusion Technique | - |
err | error | Sensor Fusion Technique, Measure, RMSE | typically error is quantitatively defined as difference of a variable with respect to a reference |
int | integration | Sensor Fusion Technique | referred to integration of gyroscope’s or accelerometer’s signal |
FQA | Factorized Quaternion Algorithm | Sensor Fusion Technique | - |
lin acc | linear acceleration | Sensor Fusion Technique, notes | acceleration of a point in space |
sto | stochastic | Sensor Fusion Technique | - |
NR | Newton-Raphson | Sensor Fusion Technique | referred to Newton-Raphson algorithm used for optimization |
MAG | - | Sensors, | Motion tracking system based on magnetic field measurement |
VMF dist | Von Mises-Fisher distribution | Sensor Fusion Technique, notes | - |
calib | calibration | Calibration, notes | - |
traj | trajectory | Calibration, Measure, RMSE, notes | trajectory of a point in space |
EMG | electromyography | Sensors | array of surface electromyography sensors |
quat | quaternion | Kinematics & Constraints, Measure, RMSE, | - |
coord sys | coordinate system | Kinematics & Constraints | - |
EE | end effector | Validation | end effector of a robot |
hor | horizontal | Validation | - |
ver | vertical | Validation | - |
OMC | optical motion capture | Validation, RMSE | OMC is referred to tracking of points in space by means of optical motion capture. Tracking of these points is often used to compute orientation of rigid bodies |
sim | simulated | Validation | referred to simulated measurements of virtual sensors |
GNSS | global satellite navigation system | Validation | provider of ground truth data in outdoor motion capture sessions |
meas | measurement | Validation, notes | - |
compar | comparison | Measure | - |
incli | inclination | Measure, RMSE | deviation with respect to a given direction |
sta | static | Measure, RMSE | - |
dyn | dynamic | Measure, RMSE | - |
RULA | rapid upper limb assessment | Measure | method of ergonomic assessment based on articular motion and forces exerted during an activity |
freq | frequency | Measure | number of occurrence of a risk class in RULA evaluation |
twi | twist | Measure, RMSE | referred to wrist motion |
valid | validation | notes | referred to validation trials carried out for the validation of the method, typically preceded by their duration |
negl | neglected | notes | referred to a variable that is neglected in a method, typically linear acceleration |
align | aligned | notes | used in the formula sens align link to indicate the assumption that a sensor’s frame is supposed to be aligned to the frame of the body it is attached to |
teleop | teleoperation | notes | - |
ROM | range of motion | notes | - |
est | estimation | notes | - |
alg | algorithm | notes | - |
const | constant | notes | - |
ZARU | zero angular rate update | notes | technique to reduce drift based on detection of steady orientation |
HDR | heuristic heading reduction | notes | technique that exploits straight paths to improve localization estimate |
reloc | relocation | notes | referred to relocation of sensors |
ang | angle or angular | Correlation, notes | - |
insp | inspection | notes | referred to visual inspection |
DH | Denavit-Hartenberg | notes | standard to define kinematic chains |
synch | synchronization | notes | - |
ISB | International Society of Biomechanics | notes | used to refer to the standard proposed by ISB to define frames attached to human limbs to define their pose and motion |
UWB | ultra wide band | Sensors | - |
References
- Fortino, G.; Giannantonio, R.; Gravina, R.; Kuryloski, P.; Jafari, R. Enabling effective programming and flexible anagement of efficient body sensor network applications. IEEE Trans. Hum.-Mach. Syst. 2013, 43, 115–133. [Google Scholar] [CrossRef]
- Chen, M.; Gonzalez, S.; Vasilakos, A.; Cao, H.; Leung, V.C. Body area networks: A survey. Mob. Netw. Appl. 2011, 16, 171–193. [Google Scholar] [CrossRef]
- Lefferts, E.J.; Markley, F.L.; Shuster, M.D. Kalman filtering for spacecraft attitude estimation. J. Guid. Control Dyn. 1982, 5, 417–429. [Google Scholar] [CrossRef]
- Shuster, M.D.; Oh, S.D. Three-axis attitude determination from vector observations. J. Guid. Control Dyn. 1981, 4, 70–77. [Google Scholar] [CrossRef]
- Choi, S.; Do, J.; Hwang, B.; Lee, J. Static attitude control for underwater robots using multiple ballast tanks. IEEJ Trans. Electr. Electron. Eng. 2014, 9, S49–S55. [Google Scholar] [CrossRef]
- Rossi, A.; Pasquali, M.; Pastore, M. Performance analysis of an inertial navigation algorithm with DVL auto-calibration for underwater vehicle. In Proceedings of the 2014 DGON Inertial Sensors and Systems Symposium (ISS), Karlsruhe, Germany, 16–17 September 2014; pp. 1–19. [Google Scholar]
- Brown, A.K.; Lu, Y. Performance test results of an integrated GPS/MEMS inertial navigation package. In Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, CA, USA, 21–24 September 2004; pp. 21–24. [Google Scholar]
- Choi, J.H.; Oh, S.H.; Kim, H.S.; Lee, Y.W. Design of Multi-Sensor-Based Open Architecture Integrated Navigation System for Localization of UGV. J. Position Navig. Timing 2012, 1, 35–43. [Google Scholar] [CrossRef]
- Iosa, M.; Picerno, P.; Paolucci, S.; Morone, G. Wearable inertial sensors for human movement analysis. Expert Rev. Med. Devices 2016, 13, 641–659. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, A.; Matsuoka, Y.; Ang, W.T. An efficient real-time human posture tracking algorithm using low-cost inertial and magnetic sensors. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, 28 September–2 October 2004; Volume 3, pp. 2967–2972. [Google Scholar]
- Gebre-Egziabher, D.; Elkaim, G.H.; Powell, J.; Parkinson, B.W. A gyro-free quaternion-based attitude determination system suitable for implementation using low cost sensors. In Proceedings of the 2000 IEEE Position Location and Navigation Symposium, San Diego, CA, USA, 13–16 March 2000; pp. 185–192. [Google Scholar]
- Ang, W.T.; Khosla, P.K.; Riviere, C.N. Kalman filtering for real-time orientation tracking of handheld microsurgical instrument. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, 28 September–2 October 2004; Volume 3, pp. 2574–2580. [Google Scholar]
- Suh, Y.S. Orientation estimation using a quaternion-based indirect Kalman filter with adaptive estimation of external acceleration. IEEE Trans. Instrum. Meas. 2010, 59, 3296–3305. [Google Scholar] [CrossRef]
- Vlasic, D.; Adelsberger, R.; Vannucci, G.; Barnwell, J.; Gross, M.; Matusik, W.; Popović, J. Practical motion capture in everyday surroundings. ACM Trans. Graph. 2007, 26, 35. [Google Scholar] [CrossRef]
- Schall, G.; Wagner, D.; Reitmayr, G.; Taichmann, E.; Wieser, M.; Schmalstieg, D.; Hofmann-Wellenhof, B. Global pose estimation using multi-sensor fusion for outdoor augmented reality. In Proceedings of the 8th IEEE International Symposium on Mixed and Augmented Reality (ISMAR 2009), Orlando, FL, USA, 19–22 October 2009; pp. 153–162. [Google Scholar]
- Corrales, J.A.; Candelas, F.; Torres, F. Hybrid tracking of human operators using IMU/UWB data fusion by a Kalman filter. Proceddings of the 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI), Amsterdam, The Netherlands, 12–15 March 2008; pp. 193–200. [Google Scholar]
- Tao, Y.; Hu, H.; Zhou, H. Integration of vision and inertial sensors for 3D arm motion tracking in home-based rehabilitation. Int. J. Robot. Res. 2007, 26, 607–624. [Google Scholar] [CrossRef]
- Schepers, H.M.; Roetenberg, D.; Veltink, P.H. Ambulatory human motion tracking by fusion of inertial and magnetic sensing with adaptive actuation. Med. Biol. Eng. Comput. 2010, 48, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Ghazilla, R.A.R.; Khairi, N.M.; Kasi, V. Reviews on various inertial measurement unit (IMU) sensor applications. Int. J. Signal Proc. Syst. 2013, 1, 256–262. [Google Scholar] [CrossRef]
- Buke, A.; Gaoli, F.; Yongcai, W.; Lei, S.; Zhiqi, Y. Healthcare algorithms by wearable inertial sensors: A survey. China Commun. 2015, 12, 1–12. [Google Scholar] [CrossRef]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Shull, P.B.; Jirattigalachote, W.; Hunt, M.A.; Cutkosky, M.R.; Delp, S.L. Quantified self and human movement: A review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait Posture 2014, 40, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Gravina, R.; Alinia, P.; Ghasemzadeh, H.; Fortino, G. Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges. Inf. Fusion 2017, 35, 68–80. [Google Scholar] [CrossRef]
- Wong, C.; Zhang, Z.Q.; Lo, B.; Yang, G.Z. Wearable sensing for solid biomechanics: A review. IEEE Sens. J. 2015, 15, 2747–2760. [Google Scholar] [CrossRef]
- Harle, R. A survey of indoor inertial positioning systems for pedestrians. IEEE Commun. Surv. Tutor. 2013, 15, 1281–1293. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, C.; Zhou, Z.; Zhang, X.; Wang, X.; Liu, Y. Mobility increases localizability: A survey on wireless indoor localization using inertial sensors. ACM Comput. Surv. 2015, 47, 1–34. [Google Scholar] [CrossRef]
- Yang, S.; Li, Q. Inertial sensor-based methods in walking speed estimation: A systematic review. Sensors 2012, 12, 6102–6116. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, A.M. Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors 2011, 11, 1489–1525. [Google Scholar] [CrossRef] [PubMed]
- Michel, T.; Fourati, H.; Geneves, P.; Layaïda, N. A comparative analysis of attitude estimation for pedestrian navigation with smartphones. In Proceedings of the 2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Banff, AB, Canada, 13–16 October 2015; pp. 1–10. [Google Scholar]
- Bachmann, E.; Duman, I.; Usta, U.; McGhee, R.; Yun, X.; Zyda, M. Orientation tracking for humans and robots using inertial sensors. In Proceedings of the 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA ’99), Monterey, CA, USA, 8–9 November 1999; pp. 187–194. [Google Scholar]
- Marins, J.L.; Yun, X.; Bachmann, E.R.; McGhee, R.B.; Zyda, M.J. An extended Kalman filter for quaternion-based orientation estimation using MARG sensors. In Proceedings of the 2001 IEEE/RSJ International Conference onntelligent Robots and Systems, Maui, HI, USA, 29 October–3 November 2001; Volume 4, pp. 2003–2011. [Google Scholar]
- Zhu, R.; Zhou, Z. A real-time articulated human motion tracking using tri-axis inertial/magnetic sensors package. IEEE Trans. Neural Syst. Rehabil. Eng. 2004, 12, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.M. Weapon IMU transfer alignment using aircraft position from actual flight tests. In Proceedings of the IEEE 1996 Position Location and Navigation Symposium, Atlanta, GA, USA, 22–25 April 1996; pp. 328–335. [Google Scholar]
- Qi, H.; Moore, J.B. Direct Kalman filtering approach for GPS/INS integration. IEEE Trans. Aerosp. Electron. Syst. 2002, 38, 687–693. [Google Scholar]
- Wang, J.J.; Wang, J.; Sinclair, D.; Watts, L. A neural network and Kalman filter hybrid approach for GPS/INS integration. In Proceedings of the 12th IAIN World Congress, 2006 International Symposium on GPS/GNSS, Jeju, Korea, 18–20 October 2006; pp. 18–20. [Google Scholar]
- Giansanti, D.; Maccioni, G.; Macellari, V. The development and test of a device for the reconstruction of 3-D position and orientation by means of a kinematic sensor assembly with rate gyroscopes and accelerometers. IEEE Trans. Biomed. Eng. 2005, 52, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- Picerno, P.; Cereatti, A.; Cappozzo, A. Joint kinematics estimate using wearable inertial and magnetic sensing modules. Gait Posture 2008, 28, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, A.M. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing. IEEE Trans. Biomed. Eng. 2006, 53, 1346–1356. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Q.; Wu, J.K. A novel hierarchical information fusion method for three-dimensional upper limb motion estimation. IEEE Trans. Instrum. Meas. 2011, 60, 3709–3719. [Google Scholar] [CrossRef]
- Lin, Z.; Zecca, M.; Sessa, S.; Bartolomeo, L.; Ishii, H.; Takanishi, A. Development of the wireless ultra-miniaturized inertial measurement unit WB-4: Preliminary performance evaluation. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Boston, MA, USA, 30 August–3 September 2011; pp. 6927–6930. [Google Scholar]
- Pons-Moll, G.; Baak, A.; Gall, J.; Leal-Taixe, L.; Muller, M.; Seidel, H.; Rosenhahn, B. Outdoor human motion capture using inverse kinematics and von mises-fisher sampling. In Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November 2011; pp. 1243–1250. [Google Scholar]
- To, G.; Mahfouz, M.R. Quaternionic Attitude Estimation for Robotic and Human Motion Tracking Using Sequential Monte Carlo Methods with von Mises-Fisher and Non Uniform Densities Simulations. IEEE Trans. Biomed. Eng. 2013, 60, 3046–3059. [Google Scholar] [CrossRef] [PubMed]
- Yun, X.; Bachmann, E.R.; McGhee, R.B. A simplified quaternion-based algorithm for orientation estimation from earth gravity and magnetic field measurements. IEEE Trans. Instrum. Meas. 2008, 57, 638–650. [Google Scholar]
- Lee, G.X.; Low, K.S. A Factorized quaternion approach to determine the arm motions using triaxial accelerometers with anatomical and sensor constraints. IEEE Trans. Instrum. Meas. 2012, 61, 1793–1802. [Google Scholar] [CrossRef]
- Bleser, G.; Hendeby, G.; Miezal, M. Using egocentric vision to achieve robust inertial body tracking under magnetic disturbances. In Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Basel, Switzerland, 26–29 October 2011; pp. 103–109. [Google Scholar]
- Denavit, J. A kinematic notation for lower-pair mechanisms based on matrices. Trans. ASME J. Appl. Mech. 1955, 22, 215–221. [Google Scholar]
- Peppoloni, L.; Filippeschi, A.; Ruffaldi, E.; Avizzano, C.A. A novel 7 degrees of freedom model for upper limb kinematic reconstruction based on wearable sensors. In Proceedings of the 2013 IEEE 11th International Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia, 26–28 September 2013; pp. 105–110. [Google Scholar]
- Cutti, A.G.; Giovanardi, A.; Rocchi, L.; Davalli, A.; Sacchetti, R. Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors. Med. Biol. Eng. Comput. 2008, 46, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Q.; Wong, W.C.; Wu, J.K. Ubiquitous human upper-limb motion estimation using wearable sensors. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Mihelj, M. Inverse kinematics of human arm based on multisensor data integration. J. Intell. Robot. Syst. 2006, 47, 139–153. [Google Scholar] [CrossRef]
- Miezal, M.; Taetz, B.; Bleser, G. On Inertial Body Tracking in the Presence of Model Calibration Errors. Sensors 2016, 16, 1132. [Google Scholar] [CrossRef] [PubMed]
- Simon, D. Kalman filtering with state constraints: A survey of linear and nonlinear algorithms. IET Control Theory Appl. 2010, 4, 1303–1318. [Google Scholar] [CrossRef]
- El-Gohary, M.; Holmstrom, L.; Huisinga, J.; King, E.; McNames, J.; Horak, F. Upper limb joint angle tracking with inertial sensors. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Boston, MA, USA, 30 August–3 September 2011; pp. 5629–5632. [Google Scholar]
- Luinge, H.J.; Veltink, P.H.; Baten, C.T. Ambulatory measurement of arm orientation. J. Biomech. 2007, 40, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Kok, M.; Hol, J.D.; Schoen, T.B. An optimization-based approach to human body motion capture using inertial sensors. In Proceedings of the 19th World Congress of the International Federation of Automatic Control (IFAC), Cape Town, South Africa, 24–29 August 2014. [Google Scholar]
- Ericson, A.; Arndt, A.; Stark, A.; Wretenberg, P.; Lundberg, A. Variation in the position and orientation of the elbow flexion axis. Bone Jt. J. 2003, 85, 538–544. [Google Scholar] [CrossRef]
- Miller, N.; Jenkins, O.C.; Kallmann, M.; Mataric, M.J. Motion capture from inertial sensing for untethered humanoid teleoperation. In Proceedings of the 2004 4th IEEE/RAS International Conference on Humanoid Robots, Santa Monica, CA, USA, 10–12 November 2004; Volume 2, pp. 547–565. [Google Scholar]
- Young, A.D. Use of body model constraints to improve accuracy of inertial motion capture. In Proceedings of the 2010 International Conference on Body Sensor Networks (BSN), Singapore, 7–9 June 2010; pp. 180–186. [Google Scholar]
- Madgwick, S.O.; Harrison, A.J.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a gradient descent algorithm. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–7. [Google Scholar]
- Tian, Y.; Wei, H.; Tan, J. An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Black, H.D. A passive system for determining the attitude of a satellite. AIAA J. 1964, 2, 1350–1351. [Google Scholar] [CrossRef]
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- Cooper, G.; Sheret, I.; McMillian, L.; Siliverdis, K.; Sha, N.; Hodgins, D.; Kenney, L.; Howard, D. Inertial sensor-based knee flexion/extension angle estimation. J. Biomech. 2009, 42, 2678–2685. [Google Scholar] [CrossRef] [PubMed]
- Roetenberg, D.; Luinge, H.; Slycke, P. Xsens MVN: Full 6 DOF Human Motion Tracking Using Miniature Inertial Sensors; Xsens Motion Technologies BV: Enschede, The Netherlands, 2009. [Google Scholar]
- Yuan, Q.; Chen, I.; Caus, A. others. Human velocity tracking and localization using 3 IMU sensors. In Proceedings of the 2013 6th IEEE Conference on Robotics, Automation and Mechatronics (RAM), Manila, Philippines, 12–15 November 2013; pp. 25–30. [Google Scholar]
- Miezal, M.; Bleser, G.; Schmitz, N.; Stricker, D. A generic approach to inertial tracking of arbitrary kinematic chains. In Proceedings of the 8th International Conference on Body Area Networks, Boston, MA, USA, 30 September– 2 October, 2013; pp. 189–192. [Google Scholar]
- Jung, Y.; Kang, D.; Kim, J. Upper body motion tracking with inertial sensors. In Proceedings of the 2010 IEEE International Conference onRobotics and Biomimetics (ROBIO), Tianjin, China, 14–18 December 2010; pp. 1746–1751. [Google Scholar]
- Brigante, C.M.; Abbate, N.; Basile, A.; Faulisi, A.C.; Sessa, S. Towards miniaturization of a MEMS-based wearable motion capture system. IEEE Trans. Ind. Electron. 2011, 58, 3234–3241. [Google Scholar] [CrossRef]
- Jimenez, A.R.; Seco, F.; Prieto, J.C.; Guevara, J. Indoor Pedestrian Navigation using an INS/EKF framework for Yaw Drift Reduction and a Foot-mounted IMU. In Proceedings of the 2010 7th Workshop on Positioning Navigation and Communication (WPNC), Dresden, Germany, 11–12 March 2010; pp. 135–143. [Google Scholar]
- Ruffaldi, E.; Peppoloni, L.; Filippeschi, A.; Avizzano, C. A novel approach to motion tracking with wearable sensors based on Probabilistic Graphical Models. In Proceedings of the IEEE International Conference onRobotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 1247–1252. [Google Scholar]
- Laviola, J.J. A comparison of unscented and extended Kalman filtering for estimating quaternion motion. In Proceedings of the 2003 IEEE American Control Conference, Denver, CO, USA, 4–6 June 2003; Volume 3, pp. 2435–2440. [Google Scholar]
- Giannitrapani, A.; Ceccarelli, N.; Scortecci, F.; Garulli, A. Comparison of EKF and UKF for spacecraft localization via angle measurements. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 75–84. [Google Scholar] [CrossRef]
- Hong-de, D.; Shao-wu, D.; Yuan-cai, C.; Guang-bin, W. Performance comparison of EKF/UKF/CKF for the tracking of ballistic target. TELKOMNIKA Indones. J. Electr. Eng. 2012, 10, 1692–1699. [Google Scholar] [CrossRef]
- Rhudy, M.; Gu, Y.; Gross, J.; Gururajan, S.; Napolitano, M.R. Sensitivity Analysis of Extended and Unscented Kalman Filters for Attitude Estimation. J. Aerosp. Inf. Syst. 2013, 10, 131–143. [Google Scholar] [CrossRef]
- Mahony, R.; Hamel, T.; Pflimlin, J.M. Complementary filter design on the special orthogonal group SO (3). In Proceedings of the 44th IEEE Conference on Decision and Control, 2005 European Control Conference, (CDC-ECC’05), Seville, Spain, 15 December 2005; pp. 1477–1484. [Google Scholar]
- Mahony, R.; Hamel, T.; Pflimlin, J.M. Nonlinear complementary filters on the special orthogonal group. IEEE Trans. Autom. Control 2008, 53, 1203–1218. [Google Scholar] [CrossRef]
- El-Gohary, M.; McNames, J. Shoulder and elbow joint angle tracking with inertial sensors. IEEE Trans. Biomed. Eng. 2012, 59, 2635–2641. [Google Scholar] [CrossRef] [PubMed]
- El-Gohary, M.; McNames, J. Human joint angle estimation with inertial sensors and validation with a robot arm. IEEE Trans. Biomed. Eng. 2015, 62, 1759–1767. [Google Scholar] [CrossRef] [PubMed]
- Joukov, V.; Karg, M.; Kulic, D. Online tracking of the lower body joint angles using imus for gait rehabilitation. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2014; pp. 2310–2313. [Google Scholar]
- Young, A. From posture to motion: The challenge for real time wireless inertial motion capture. In Proceedings of the Fifth International Conference on Body Area Networks, Corfu Island, Greece, 10–12 September 2010; pp. 131–137. [Google Scholar]
- Salehi, S.; Mostofi, N.; Bleser, G. A practical in-field magnetometer calibration method for IMUs. In Proceedings of the IROS Workshop on Cognitive Assistive Systems: Closing the Action-Perception Loop, Algarve, Portugal, 7 October 2012; pp. 39–44. [Google Scholar]
- Harada, T.; Mori, T.; Sato, T. Development of a tiny orientation estimation device to operate under motion and magnetic disturbance. Int. J. Robot. Res. 2007, 26, 547–559. [Google Scholar] [CrossRef]
- Lee, J.K.; Park, E.J. Minimum-order Kalman filter with vector selector for accurate estimation of human body orientation. IEEE Trans. Robot. 2009, 25, 1196–1201. [Google Scholar]
- Roetenberg, D.; Luinge, H.J.; Baten, C.T.; Veltink, P.H. Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Combettes, C.; Renaudin, V. Delay Kalman Filter to Estimate the Attitude of a Mobile Object with Indoor Magnetic Field Gradients. Micromachines 2016, 7, 79. [Google Scholar] [CrossRef]
- Ligorio, G.; Sabatini, A.M. Dealing with Magnetic Disturbances in Human Motion Capture: A Survey of Techniques. Micromachines 2016, 7, 43. [Google Scholar] [CrossRef]
- Zhou, H.; Hu, H. Reducing drifts in the inertial measurements of wrist and elbow positions. IEEE Trans. Instrum. Meas. 2010, 59, 575–585. [Google Scholar] [CrossRef]
- Dejnabadi, H.; Jolles, B.M.; Casanova, E.; Fua, P.; Aminian, K. Estimation and visualization of sagittal kinematics of lower limbs orientation using body-fixed sensors. IEEE Trans. Biomed. Eng. 2006, 53, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
- Palermo, E.; Rossi, S.; Marini, F.; Patanè, F.; Cappa, P. Experimental evaluation of accuracy and repeatability of a novel body-to-sensor calibration procedure for inertial sensor-based gait analysis. Measurement 2014, 52, 145–155. [Google Scholar] [CrossRef]
- Taunyazov, T.; Omarali, B.; Shintemirov, A. A novel low-cost 4-DOF wireless human arm motion tracker. 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 26–29 June 2016; pp. 157–162. [Google Scholar]
- Robert-Lachaine, X.; Mecheri, H.; Larue, C.; Plamondon, A. Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis. Med. Biol. Eng. Comput. 2017, 55, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Favre, J.; Jolles, B.; Aissaoui, R.; Aminian, K. Ambulatory measurement of 3D knee joint angle. J. Biomech. 2008, 41, 1029–1035. [Google Scholar] [CrossRef] [PubMed]
- Seel, T.; Raisch, J.; Schauer, T. IMU-based joint angle measurement for gait analysis. Sensors 2014, 14, 6891–6909. [Google Scholar] [CrossRef] [PubMed]
- Cutti, A.G.; Ferrari, A.; Garofalo, P.; Raggi, M.; Cappello, A.; Ferrari, A. ‘Outwalk’: A protocol for clinical gait analysis based on inertial and magnetic sensors. Med. Biol. Eng. Comput. 2010, 48, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Luinge, H.J.; Veltink, P.H. Measuring orientation of human body segments using miniature gyroscopes and accelerometers. Med. Biol. Eng. Comput. 2005, 43, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Favre, J.; Luthi, F.; Jolles, B.; Siegrist, O.; Najafi, B.; Aminian, K. A new ambulatory system for comparative evaluation of the three-dimensional knee kinematics, applied to anterior cruciate ligament injuries. Knee Surg. Sports Traumatol. Arthrosc. 2006, 14, 592–604. [Google Scholar] [CrossRef] [PubMed]
- Yun, X.; Bachmann, E.R. Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking. IEEE Trans. Robot. 2006, 22, 1216–1227. [Google Scholar] [CrossRef]
- Liu, K.; Liu, T.; Shibata, K.; Inoue, Y. Ambulatory measurement and analysis of the lower limb 3D posture using wearable sensor system. In Proceedings of the 2009 International Conference on Mechatronics and Automation, Changchun, China, 9–12 August 2009; pp. 3065–3069. [Google Scholar]
- Roetenberg, D.; Slycke, P.J.; Veltink, P.H. Ambulatory position and orientation tracking fusing magnetic and inertial sensing. IEEE Trans. Biomed. Eng. 2007, 54, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Picerno, P.; Cereatti, A.; Cappozzo, A. A spot check for assessing static orientation consistency of inertial and magnetic sensing units. Gait Posture 2011, 33, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Hol, J.D.; Dijkstra, F.; Luinge, H.; Schon, T.B. Tightly coupled UWB/IMU pose estimation. In Proceedings of the IEEE International Conference on Ultra-Wideband (ICUWB 2009), Vancouver, BC, Canada, 9–11 September 2009; pp. 688–692. [Google Scholar]
- Kok, M.; Hol, J.D.; Schön, T.B. Indoor positioning using ultrawideband and inertial measurements. IEEE Trans. Veh. Technol. 2015, 64, 1293–1303. [Google Scholar] [CrossRef]
- Favre, J.; Aissaoui, R.; Jolles, B.; de Guise, J.; Aminian, K. Functional calibration procedure for 3D knee joint angle description using inertial sensors. J. Biomech. 2009, 42, 2330–2335. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Zhang, Z.Q.; Wu, J.K.; Wong, W.C. Hierarchical information fusion for global displacement estimation in microsensor motion capture. IEEE Trans. Biomed. Eng. 2013, 60, 2052–2063. [Google Scholar] [CrossRef] [PubMed]
- Zihajehzadeh, S.; Park, E.J. A Novel Biomechanical Model-Aided IMU/UWB Fusion for Magnetometer-Free Lower Body Motion Capture. IEEE Trans. Syst. Man Cybern. Syst. 2016, 47, 927–938. [Google Scholar] [CrossRef]
- Taetz, B.; Bleser, G.; Miezal, M. Towards Self-Calibrating Inertial Body Motion Capture. In Proceedings of the19th International Conference on Information Fusion, Heidelberg, Germany, 5–8 July 2016. [Google Scholar]
- Salehi, S.; Bleser, G.; Schmitz, N.; Stricker, D. A Low-Cost and Light-Weight Motion Tracking Suit. In Proceedings of the 2013 IEEE 10th International Conference on Ubiquitous Intelligence and Computing, and 10th International Conference on Autonomic and Trusted Computing (UIC/ATC), Vietri sul Mere, Italy, 18–21 December 2013; pp. 474–479. [Google Scholar]
- Vignais, N.; Miezal, M.; Bleser, G.; Mura, K.; Gorecky, D.; Marin, F. Innovative system for real-time ergonomic feedback in industrial manufacturing. Appl. Ergon. 2013, 44, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Bleser, G.; Steffen, D.; Reiss, A.; Weber, M.; Hendeby, G.; Fradet, L. Personalized physical activity monitoring using wearable sensors. In Smart Health; Springer: Berlin, Germany, 2015; pp. 99–124. [Google Scholar]
- Peppoloni, L.; Filippeschi, A.; Ruffaldi, E.; Avizzano, C. A novel wearable system for the online assessment of risk for biomechanical load in repetitive efforts. Int. J. Ind. Ergon. 2016, 52, 1–11. [Google Scholar] [CrossRef]
- Peppoloni, L.; Brizzi, F.; Avizzano, C.A.; Ruffaldi, E. Immersive ros-integrated framework for robot teleoperation. In Proceedings of the 2015 IEEE Symposium on 3D User Interfaces (3DUI), Arles, France, 23–24 March 2015; pp. 177–178. [Google Scholar]
- Schepers, H.; Veltink, P. Stochastic magnetic measurement model for relative position and orientation estimation. Meas. Sci. Technol. 2010, 21, 065801. [Google Scholar] [CrossRef]
- Ruffaldi, E.; Peppoloni, L.; Filippeschi, A. Sensor fusion for complex articulated body tracking applied in rowing. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2015, 229. [Google Scholar] [CrossRef]
- Supej, M. 3D measurements of alpine skiing with an inertial sensor motion capture suit and GNSS RTK system. J. Sports Sci. 2010, 28, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Klopčar, N.; Lenarčič, J. Bilateral and unilateral shoulder girdle kinematics during humeral elevation. Clin. Biomech. 2006, 21, S20–S26. [Google Scholar] [CrossRef] [PubMed]
E | S | S | ||||
---|---|---|---|---|---|---|
Method | E (mm) | C | E (mm) | C | E (mm) | C |
1 | 38.8 | 0.86 | 108.9 | 0.46 | 66.0 | 0.66 |
2 | 89.2 | 0.77 | 121.4 | 0.86 | 243.8 | 0.36 |
3-pu. | 45.7 | 0.84 | 122.86 | 0.46 | 156.0 | 0.59 |
3-pe. | 59.7 | 0.84 | 100.4 | 0.50 | 272.2 | 0.60 |
4 | 75.7 | 0.91 | 82.7 | 0.86 | 86.0 | 0.73 |
5 | 89.2 | 0.77 | 214.4 | 0.89 | 125.4 | 0.66 |
Method | |||||||
---|---|---|---|---|---|---|---|
Cycle | Index | 1 | 2 | 3-Pure | 3-Perfect | 4 | 5 |
E (mm) | 1 | 43.7 | 102.8 | 53.8 | 73.4 | 72.3 | 51.3 |
2 | 49.9 | 100.3 | 64.2 | 79.9 | 90.7 | 44.8 | |
3 | 46.6 | 103.4 | 63.1 | 84.0 | 98.3 | 49.4 | |
4 | 37.7 | 102.8 | 53.3 | 68.1 | 92.1 | 47.7 | |
5 | 35.3 | 97.1 | 44.5 | 57.6 | 79.0 | 59.6 | |
6 | 49.4 | 102.8 | 51.3 | 64.1 | 85.7 | 89.6 | |
7 | 50.4 | 108.4 | 45.9 | 57.5 | 90.5 | 101.3 | |
8 | 38.9 | 100.2 | 44.7 | 56.3 | 76.0 | 97.8 | |
9 | 23.6 | 60.9 | 27.8 | 36.5 | 59.0 | 136.9 | |
C | 1 | 0.94 | 0.73 | 0.96 | 0.92 | 0.94 | 0.93 |
2 | 0.94 | 0.77 | 0.91 | 0.87 | 0.92 | 0.85 | |
3 | 0.96 | 0.75 | 0.91 | 0.82 | 0.95 | 0.81 | |
4 | 0.95 | 0.72 | 0.96 | 0.92 | 0.96 | 0.76 | |
5 | 0.95 | 0.78 | 0.93 | 0.89 | 0.94 | 0.87 | |
6 | 0.93 | 0.81 | 0.95 | 0.92 | 0.92 | 0.82 | |
7 | 0.83 | 0.77 | 0.84 | 0.85 | 0.91 | 0.76 | |
8 | 0.88 | 0.74 | 0.86 | 0.89 | 0.95 | 0.71 | |
9 | 0.87 | 0.86 | 0.92 | 0.93 | 0.95 | 0.94 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filippeschi, A.; Schmitz, N.; Miezal, M.; Bleser, G.; Ruffaldi, E.; Stricker, D. Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion. Sensors 2017, 17, 1257. https://doi.org/10.3390/s17061257
Filippeschi A, Schmitz N, Miezal M, Bleser G, Ruffaldi E, Stricker D. Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion. Sensors. 2017; 17(6):1257. https://doi.org/10.3390/s17061257
Chicago/Turabian StyleFilippeschi, Alessandro, Norbert Schmitz, Markus Miezal, Gabriele Bleser, Emanuele Ruffaldi, and Didier Stricker. 2017. "Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion" Sensors 17, no. 6: 1257. https://doi.org/10.3390/s17061257