Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Amyloid-β (Aβ) is a peptide formed by 39–43 amino acids, heterogenous by the length of its C-terminus. Aβ constitutes a subnanomolar monomeric component of human biological fluids; however, in sporadic variants of Alzheimer’s disease... more
Amyloid-β (Aβ) is a peptide formed by 39–43 amino acids, heterogenous by the length of its C-terminus. Aβ constitutes a subnanomolar monomeric component of human biological fluids; however, in sporadic variants of Alzheimer’s disease (AD), it forms soluble neurotoxic oligomers and accumulates as insoluble extracellular polymeric aggregates (amyloid plaques) in the brain tissues. The plaque formation is controlled by zinc ions; therefore, abnormal interactions between the ions and Aβ seem to take part in the triggering of sporadic AD. The amyloid plaques contain various Aβ isoforms, among which the most common is Aβ with an isoaspartate in position 7 (isoD7). The spontaneous conversion of D7 to isoD7 is associated with Aβ aging. Aβ molecules with isoD7 (isoD7-Aβ) easily undergo zinc-dependent oligomerization, and upon administration to transgenic animals (mice, nematodes) used for AD modeling, act as zinc-dependent seeds of the pathological aggregation of Aβ. The formation of zinc-bo...
The biogenic polyamines, spermidine (Spd) and spermine (Spm), are present at millimolar concentrations in all eukaryotic cells, where they participate in the regulation of vitally important cellular functions. Polyamine analogs and... more
The biogenic polyamines, spermidine (Spd) and spermine (Spm), are present at millimolar concentrations in all eukaryotic cells, where they participate in the regulation of vitally important cellular functions. Polyamine analogs and derivatives are a traditional and important instrument for the investigation of the cellular functions of polyamines, enzymes of their metabolism, and the regulation of the biosynthesis of antizyme—a key downregulator of polyamine homeostasis. Here, we describe convenient gram-scale syntheses of a set of C-methylated analogs of Spd. The biochemical properties of these compounds and the possibility for the regulation of their activity by moving a methyl group along the polyamine backbone and by changing the stereochemistry of the chiral center(s) are discussed.
The Alzheimer’s disease (AD)-associated breakdown of the blood–brain barrier (BBB) promotes the accumulation of beta-amyloid peptide (Aβ) in the brain as the BBB cells provide Aβ transport from the brain parenchyma to the blood, and vice... more
The Alzheimer’s disease (AD)-associated breakdown of the blood–brain barrier (BBB) promotes the accumulation of beta-amyloid peptide (Aβ) in the brain as the BBB cells provide Aβ transport from the brain parenchyma to the blood, and vice versa. The breakdown of the BBB during AD may be caused by the emergence of blood-borne Aβ pathogenic forms, such as structurally and chemically modified Aβ species; their effect on the BBB cells has not yet been studied. Here, we report that the effects of Aβ42, Aβ42, containing isomerized Asp7 residue (iso-Aβ42) or phosphorylated Ser8 residue (p-Aβ42) on the mitochondrial potential and respiration are closely related to the redox status changes in the mouse brain endothelial cells bEnd.3. Aβ42 and iso-Aβ42 cause a significant increase in nitric oxide, reactive oxygen species, glutathione, cytosolic calcium and the mitochondrial potential after 4 h of incubation. P-Aβ42 either does not affect or its effect develops after 24 h of incubation. Aβ42 an...
This dataset is associated with the pre-print "Hemoglobin as oxygen-dependent glutathione buffer" DOI 10.5281/zenodo.5817228
Beta-amyloid (Aβ) has a dual role, both as an important factor in the pathology of Alzheimer’s disease and as a regulator in brain physiology. The inhibitory effect of Aβ42 oligomers on Na,K-ATPase contributes to neuronal dysfunction in... more
Beta-amyloid (Aβ) has a dual role, both as an important factor in the pathology of Alzheimer’s disease and as a regulator in brain physiology. The inhibitory effect of Aβ42 oligomers on Na,K-ATPase contributes to neuronal dysfunction in Alzheimer’s disease. Still, the physiological role of the monomeric form of Aβ42 interaction with Na,K-ATPase remains unclear. We report that Na,K-ATPase serves as a receptor for Aβ42 monomer, triggering Src kinase activation. The co-localization of Aβ42 with α1- and β1-subunits of Na,K-ATPase, and Na,K-ATPase with Src kinase in SH-SY5Y neuroblastoma cells, was observed. Treatment of cells with 100 nM Aβ42 causes Src kinase activation, but does not alter Na,K-ATPase transport activity. The interaction of Aβ42 with α1β1 Na,K-ATPase isozyme leads to activation of Src kinase associated with the enzyme. Notably, prevention of Na,K-ATPase:Src kinase interaction by a specific inhibitor pNaKtide disrupts the Aβ-induced Src kinase activation. Stimulatory eff...
Impaired lipopolysaccharide biosynthesis in Gram-negative bacteria results in the “deep rough” phenotype, which is characterized by increased sensitivity of cells to various hydrophobic compounds, including antibiotics novobiocin,... more
Impaired lipopolysaccharide biosynthesis in Gram-negative bacteria results in the “deep rough” phenotype, which is characterized by increased sensitivity of cells to various hydrophobic compounds, including antibiotics novobiocin, actinomycin D, erythromycin, etc. The present study showed that E. coli mutants carrying deletions of the ADP-heptose biosynthesis genes became hypersensitive to a wide range of antibacterial drugs: DNA gyrase inhibitors, protein biosynthesis inhibitors (aminoglycosides, tetracycline), RNA polymerase inhibitors (rifampicin), and β-lactams (carbenicillin). In addition, it was found that inactivation of the gmhA, hldE, rfaD, and waaC genes led to dramatic changes in the redox status of cells: a decrease in the pool of reducing NADPH and ATP equivalents, the concentration of intracellular cysteine, a change in thiol homeostasis, and a deficiency in the formation of hydrogen sulfide. In “deep rough” mutants, intensive formation of reactive oxygen species was o...
Alzheimer’s disease (AD) is a neurodegenerative disease accompanied by progressive cognitive and memory dysfunction due to disruption of normal electrotonic properties of neurons and neuronal loss. The Na,K-ATPase interaction with beta... more
Alzheimer’s disease (AD) is a neurodegenerative disease accompanied by progressive cognitive and memory dysfunction due to disruption of normal electrotonic properties of neurons and neuronal loss. The Na,K-ATPase interaction with beta amyloid (Aβ) plays an important role in AD pathogenesis. It has been shown that Na,K-ATPase activity in the AD brain was significantly lower than those in age-matched control brain. The interaction of Aβ42 with Na,K-ATPase and subsequent oligomerization leads to inhibition of the enzyme activity. In this study interaction interfaces between three common Aβ42 isoforms, and different conformations of human Na,K-ATPase (α1β1) have been obtained using molecular modeling, including docking and molecular dynamics (MD). Interaction sites of Na,K-ATPase with Aβ42 are localized between extracellular parts of α- and β- subunits and are practically identical for Na,K-ATPase at different conformations. Thermodynamic parameters for the formation of Na,K-ATPase:Aβ4...
The polyamines, spermine (Spm) and spermidine (Spd), are important for cell growth and function. Their homeostasis is strictly controlled, and a key downregulator of the polyamine pool is the polyamine-inducible protein, antizyme 1... more
The polyamines, spermine (Spm) and spermidine (Spd), are important for cell growth and function. Their homeostasis is strictly controlled, and a key downregulator of the polyamine pool is the polyamine-inducible protein, antizyme 1 (OAZ1). OAZ1 inhibits polyamine uptake and targets ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis, for proteasomal degradation. Here we report, for the first time, that polyamines induce dimerization of mouse recombinant full-length OAZ1, forming an (OAZ1)2–polyamine complex. Dimerization could be modulated by functionally active C-methylated spermidine mimetics (MeSpds) by changing the position of the methyl group along the Spd backbone—2-MeSpd was a poor inducer as opposed to 1-MeSpd, 3-MeSpd, and Spd, which were good inducers. Importantly, the ability of compounds to inhibit polyamine uptake correlated with the efficiency of the (OAZ1)2–polyamine complex formation. Thus, the (OAZ1)2–polyamine complex may be needed to ...
Alzheimer’s disease (AD) is the leading cause of dementia among the elderly. Neuropathologically, AD is characterized by the deposition of a 39- to 42-amino acid long β-amyloid (Aβ) peptide in the form of senile plaques. Several... more
Alzheimer’s disease (AD) is the leading cause of dementia among the elderly. Neuropathologically, AD is characterized by the deposition of a 39- to 42-amino acid long β-amyloid (Aβ) peptide in the form of senile plaques. Several post-translational modifications (PTMs) in the N-terminal domain have been shown to increase the aggregation and cytotoxicity of Aβ, and specific Aβ proteoforms (e.g., Aβ with isomerized D7 (isoD7-Aβ)) are abundant in the senile plaques of AD patients. Animal models are indispensable tools for the study of disease pathogenesis, as well as preclinical testing. In the presented work, the accumulation dynamics of Aβ proteoforms in the brain of one of the most widely used amyloid-based mouse models (the 5xFAD line) was monitored. Mass spectrometry (MS) approaches, based on ion mobility separation and the characteristic fragment ion formation, were applied. The results indicated a gradual increase in the Aβ fraction of isoD7-Aβ, starting from approximately 8% at ...
Cholinergic dysfunction in Alzheimer’s disease may arise from selective death of cholinergic neurons caused by the interaction of Aβ peptide with nicotinic acetylcholine receptors (nAChRs). Thereby, compounds that prevent the interaction... more
Cholinergic dysfunction in Alzheimer’s disease may arise from selective death of cholinergic neurons caused by the interaction of Aβ peptide with nicotinic acetylcholine receptors (nAChRs). Thereby, compounds that prevent the interaction of Aβ with nAChRs are needed to address the cholinergic deficit. Here, we identify the interaction site between Aβ42 and one of the two most abundant nicotinic receptors ‐ α4β2 nAChR. Further, we propose a tetrapeptide that prevents this interaction and serves as a potential therapeutic to counteract the cholinergic deficit in AD.
Many viruses induce oxidative stress and cause S-glutathionylation of Cys residues of the host and viral proteins. Changes in cell functioning during viral infection may be associated with glutathionylation of a number of key proteins... more
Many viruses induce oxidative stress and cause S-glutathionylation of Cys residues of the host and viral proteins. Changes in cell functioning during viral infection may be associated with glutathionylation of a number of key proteins including Na,K-ATPase which creates a gradient of sodium and potassium ions. It was found that Na,K-ATPaseα-subunit has a basal glutathionylation which is not abrogated by reducing agent. We have shown that acute hypoxia leads to increase of total glutathionylation level of Na,K-ATPaseα-subunit; however, basal glutathionylation ofα-subunit increases under prolonged hypoxia only. The role of basal glutathionylation in Na,K-ATPase function remains unclear. Understanding significance of basal glutathionylation is complicated by the fact that there are no X-ray structures of Na,K-ATPase with the identified glutathione molecules. We have analyzed all X-ray structures of the Na,K-ATPaseα-subunit from pig kidney and found that there are a number of isolated c...
Novel generations of antitumor anthraquinones are expected to be advantageous over the conventional chemotherapeutic agents. Previous structure-activity relationship studies demonstrated an importance of the positively charged side chains... more
Novel generations of antitumor anthraquinones are expected to be advantageous over the conventional chemotherapeutic agents. Previous structure-activity relationship studies demonstrated an importance of the positively charged side chains conjugated to anthra[2,3-b]thiophene-5,10-dione scaffolds. Exploring a role of individual side chain moieties in binding to the duplex and G-quadruplex DNA, modulation of telomerase and topoisomerase I activities, intracellular accumulation and cytostatic potency, we herein analyzed a series of reported and newly synthesized guanidine-containing derivatives of anthra[2,3-b]thiophene-5,10-dione. We found that the number of cationic side chains (namely, two) is critical for a tight interaction with human telomeric G-quadruplex (TelQ). Along with a larger drug-TelQ association constant, the telomerase attenuation by anthrathiophenediones with two basic groups in the side chains was more pronounced than by the analogs bearing one basic group. For mono-guanidinated compounds the substituent with the amino group in the side chain provided better TelQ affinity than the methylamine residue. The intracellular uptake of the mono-guanidino derivative with two side chains was >2-fold higher than the respective value for the bis(guanidino) derivative. This difference can explain a lower antiproliferative potency of bis(guanidine) containing compounds. Thus, the modifications of side chains of anthra[2,3-b]thiophene-5,10-dione differently modulated drug-target interactions and cellular effects. Nevertheless, the selected compound 11-(3-aminopropylamino)-4-(2-guanidinoethylamino)anthra[2,3-b]thiophene-5,10-dione 13 demonstrated a high affinity to TelQ and the ability to stabilize the quadruplex structure. These properties were paralleled by reasonable potency of 13 as a telomerase/topoisomerase I inhibitor and an antiproliferative agent. These results indicate that the structural elements of anthra[2,3-b]thiophene-5,10-dione derivatives can be balanced to yield a candidate for further preclinical study.
The engineering of catalytic function in antibodies requires precise information on their structure. Here, results are presented that show how the antibody domain structure affects its functionality. The previously designed... more
The engineering of catalytic function in antibodies requires precise information on their structure. Here, results are presented that show how the antibody domain structure affects its functionality. The previously designed organophosphate-metabolizing reactibody A17 has been re-engineered by replacing its constant κ light chain by the λ chain (A17λ), and the X-ray structure of A17λ has been determined at 1.95 Å resolution. It was found that compared with A17κ the active centre of A17λ is displaced, stabilized and made more rigid owing to interdomain interactions involving the CDR loops from the VLand VHdomains. These VL/VHdomains also have lower mobility, as deduced from the atomic displacement parameters of the crystal structure. The antibody elbow angle is decreased to 126° compared with 138° in A17κ. These structural differences account for the subtle changes in catalytic efficiency and thermodynamic parameters determined with two organophosphate ligands, as well as in the affin...
Accumulation of amyloid-β (Aβ) in neurons accompanies Alzheimer's disease progression. In the cytoplasm Aβ influences activity of proteasomes, the multisubunit protein complexes that... more
Accumulation of amyloid-β (Aβ) in neurons accompanies Alzheimer's disease progression. In the cytoplasm Aβ influences activity of proteasomes, the multisubunit protein complexes that hydrolyze the majority of intracellular proteins. However, the manner in which Aβ affects the proteolytic activity of proteasomes has not been established. In this study the effect of Aβ42 and Aβ42 with isomerized Asp7 on activity of different forms of proteasomes has been analyzed. It has been shown that Aβ peptides efficiently reduce activity of the 20S proteasomes, but increase activity of the 20S proteasomes capped with the 19S and/or 11S regulators. Modulation of proteasome activity is mainly determined by the C-terminal segment of Aβ (amino acids 17-42). This study demonstrated an important role of proteasome regulators in the interplay between Aβ and the proteasomes.
The important role of miRNA in cell proliferation and differentiation has raised interest in exogenous ribonucleases (RNases) as tools to control tumour-associated intracellular and extracellular miRNAs. In this work, we evaluated the... more
The important role of miRNA in cell proliferation and differentiation has raised interest in exogenous ribonucleases (RNases) as tools to control tumour-associated intracellular and extracellular miRNAs. In this work, we evaluated the effects of the RNase binase from Bacillus pumilus on small non-coding regulatory RNAs in the context of mouse RLS40 lymphosarcoma inhibition. In vitro binase exhibited cytotoxicity towards RLS40 cells via apoptosis induction through caspase-3/caspase-7 activation and decreased the levels of miR-21a, let-7g, miR-31 and miR-155. Intraperitoneal injections of binase in RLS40-bearing mice resulted in the retardation of primary tumour growth by up to 60% and inhibition of metastasis in the liver by up to 86%, with a decrease in reactive inflammatory infiltration and mitosis in tumour tissue. In the blood serum of binase-treated mice, decreases in the levels of most studied miRNAs were observed, excluding let-7g, while in tumour tissue, the levels of oncomir...
Cardiotonic steroids (CTSs) are specific inhibitors of Na,K-ATPase (NKA). They induce diverse physiological effects and were investigated as potential drugs in heart diseases, hypertension, neuroinflammation, antiviral and cancer therapy.... more
Cardiotonic steroids (CTSs) are specific inhibitors of Na,K-ATPase (NKA). They induce diverse physiological effects and were investigated as potential drugs in heart diseases, hypertension, neuroinflammation, antiviral and cancer therapy. Here, we compared the inhibition mode and binding of CTSs, such as ouabain, digoxin and marinobufagenin to NKA from pig and rat kidneys, containing CTSs-sensitive (α1S) and -resistant (α1R) α1-subunit, respectively. Marinobufagenin in contrast to ouabain and digoxin interacted with α1S-NKA reversibly, and its binding constant was reduced due to the decrease in the deepening in the CTSs-binding site and a lower number of contacts between the site and the inhibitor. The formation of a hydrogen bond between Arg111 and Asp122 in α1R-NKA induced the reduction in CTSs’ steroid core deepening that led to the reversible inhibition of α1R-NKA by ouabain and digoxin and the absence of marinobufagenin’s effect on α1R-NKA activity. Our results elucidate that t...
The discovery of migrating protein complexes armed with β‐amyloid (Aβ) and acting as the driving force of Alzheimer’s disease (AD) mechanism led us to suggest that besides the pathogenic peptide some other proteins may cooperate with the... more
The discovery of migrating protein complexes armed with β‐amyloid (Aβ) and acting as the driving force of Alzheimer’s disease (AD) mechanism led us to suggest that besides the pathogenic peptide some other proteins may cooperate with the latter and enhance its cytotoxicity and intercellular propagation. One of such proteins was suggested to be glyceraldehyde‐3‐phosphatedehydrogenase (GAPDH), enzyme that in normal conditions maintains cellular glycolysis and under action of oxidative stress is converted to monomers and dimers and forms tight, insoluble complexes with aggregation‐prone polypeptides.
One of the treatment strategies for Alzheimer’s disease (AD) is based on the use of pharmacological agents capable of binding to beta-amyloid (Aβ) and blocking its aggregation in the brain. Previously, we found that intravenous... more
One of the treatment strategies for Alzheimer’s disease (AD) is based on the use of pharmacological agents capable of binding to beta-amyloid (Aβ) and blocking its aggregation in the brain. Previously, we found that intravenous administration of the synthetic tetrapeptide Acetyl-His-Ala-Glu-Glu-Amide (HAEE), which is an analogue of the 35–38 region of the α4 subunit of α4β2 nicotinic acetylcholine receptor and specifically binds to the 11–14 site of Aβ, reduced the development of cerebral amyloidogenesis in a mouse model of AD. In the current study on three types of laboratory animals, we determined the biodistribution and tissue localization patterns of HAEE peptide after single intravenous bolus administration. The pharmacokinetic parameters of HAEE were established using uniformly tritium-labeled HAEE. Pharmacokinetic data provided evidence that HAEE goes through the blood–brain barrier. Based on molecular modeling, a role of LRP1 in receptor-mediated transcytosis of HAEE was pro...
The coordination of zinc ions by histidine residues of amyloid-beta peptide (Aβ) plays a critical role in the zinc-induced Aβ aggregation implicated in Alzheimer’s disease (AD) pathogenesis. The histidine to arginine substitution at... more
The coordination of zinc ions by histidine residues of amyloid-beta peptide (Aβ) plays a critical role in the zinc-induced Aβ aggregation implicated in Alzheimer’s disease (AD) pathogenesis. The histidine to arginine substitution at position 6 of the Aβ sequence (H6R, English mutation) leads to an early onset of AD. Herein, we studied the effects of zinc ions on the aggregation of the Aβ42 peptide and its isoform carrying the H6R mutation (H6R-Aβ42) by circular dichroism spectroscopy, dynamic light scattering, turbidimetric and sedimentation methods, and bis-ANS and thioflavin T fluorescence assays. Zinc ions triggered the occurrence of amorphous aggregates for both Aβ42 and H6R-Aβ42 peptides but with distinct optical properties. The structural difference of the formed Aβ42 and H6R-Aβ42 zinc-induced amorphous aggregates was also supported by the results of the bis-ANS assay. Moreover, while the Aβ42 peptide demonstrated an increase in the random coil and β-sheet content upon complex...
Rod cell membranes contain cholesterol-rich detergent-resistant membrane (DRM) rafts, which accumulate visual cascade proteins as well as proteins involved in regulation of phototransduction such as rhodopsin kinase and guanylate... more
Rod cell membranes contain cholesterol-rich detergent-resistant membrane (DRM) rafts, which accumulate visual cascade proteins as well as proteins involved in regulation of phototransduction such as rhodopsin kinase and guanylate cyclases. Caveolin-1 is the major integral component of DRMs, possessing scaffolding and regulatory activities towards various signaling proteins. In this study, photoreceptor Ca-binding proteins recoverin, NCS1, GCAP1, and GCAP2, belonging to neuronal calcium sensor (NCS) family, were recognized as novel caveolin-1 interacting partners. All four NCS proteins co-fractionate with caveolin-1 in DRMs, isolated from illuminated bovine rod outer segments. According to pull-down assay, surface plasmon resonance spectroscopy and isothermal titration calorimetry data, they are capable of high-affinity binding to either N-terminal fragment of caveolin-1 (1-101), or its short scaffolding domain (81-101) via a novel structural site. In recoverin this site is localized...
The Hsp70 chaperone binds and inhibits proteins implicated in apoptotic signaling including Caspase-3. Induction of apoptosis is an important mechanism of anti-cancer drugs, therefore Hsp70 can act as a protective system in tumor cells... more
The Hsp70 chaperone binds and inhibits proteins implicated in apoptotic signaling including Caspase-3. Induction of apoptosis is an important mechanism of anti-cancer drugs, therefore Hsp70 can act as a protective system in tumor cells against therapeutic agents. In this study we present an assessment of candidate compounds that are able to dissociate the complex of Hsp70 with Caspase-3, and thus sensitize cells to drug-induced apoptosis. Using the PASS program for prediction of biological activity we selected a derivative of benzodioxol (BT44) that is known to affect molecular chaperones and caspases. Drug affinity responsive target stability and microscale thermophoresis assays indicated that BT44 bound to Hsp70 and reduced the chaperone activity. When etoposide was administered, heat shock accompanied with an accumulation of Hsp70 led to an inhibition of etoposide-induced apoptosis. The number of apoptotic cells increased following BT44 administration, and forced Caspase-3 proces...
Cerebral β-amyloidosis, an accumulation in the patient's brain of aggregated amyloid-β (Aβ) peptides abnormally saturated by divalent biometal ions, is one of the hallmarks of Alzheimer's disease (AD). Earlier, we found that... more
Cerebral β-amyloidosis, an accumulation in the patient's brain of aggregated amyloid-β (Aβ) peptides abnormally saturated by divalent biometal ions, is one of the hallmarks of Alzheimer's disease (AD). Earlier, we found that exogenously administrated synthetic Aβ with isomerized Asp7 (isoD7-Aβ) induces Aβ fibrillar aggregation in the transgenic mice model of AD. IsoD7-Aβ molecules have been implied to act as seeds enforcing endogenous Aβ to undergo pathological aggregation through zinc-mediated interactions. On the basis of our findings on zinc-induced oligomerization of the metal-binding domain of various Aβ species, we hypothesize that upon phosphorylation of Ser8, isoD7-Aβ loses its ability to form zinc-bound oligomeric seeds. In this work, we found that (i) isoD7-Aβ with phosphorylated Ser8 (isoD7-pS8-Aβ) is less prone to spontaneous and zinc-induced aggregation in comparison with isoD7-Aβ and intact Aβ as shown by thioflavin T fluorimetry and dynamic light scattering da...
The triggers of late-onset sporadic Alzheimer's disease (AD) are still poorly understood. Impairment of protein phosphorylation with age is well-known; however, the role of the phosphorylation in β-amyloid peptide (Aβ) is not studied... more
The triggers of late-onset sporadic Alzheimer's disease (AD) are still poorly understood. Impairment of protein phosphorylation with age is well-known; however, the role of the phosphorylation in β-amyloid peptide (Aβ) is not studied sufficiently. Zinc-induced oligomerization of Aβ represents a potential seeding mechanism for the formation of neurotoxic Aβ oligomers and aggregates. Phosphorylation of Aβ by Ser8 (pS8-Aβ), localized inside the zinc-binding domain of the peptide, may significantly alter its zinc-induced oligomerization. Indeed, using dynamic light scattering, we have shown that phosphorylation by Ser8 dramatically reduces zinc-induced aggregation of Aβ, and moreover pS8-Aβ suppresses zinc-driven aggregation of non-modified Aβ in an equimolar mixture. We have further analyzed the effect of pS8-Aβ on the progression of cerebral amyloidosis with serial retro-orbital injections of the peptide in APPSwe/PSEN1dE9 murine model of AD, followed by histological analysis of a...
Zinc-induced aggregation of amyloid-β peptides (Aβ) is considered to contribute to the pathogenesis of Alzheimer's disease. While glycosaminoglycans (GAGs) that are commonly present in interneuronal space are known to enhance Aβ... more
Zinc-induced aggregation of amyloid-β peptides (Aβ) is considered to contribute to the pathogenesis of Alzheimer's disease. While glycosaminoglycans (GAGs) that are commonly present in interneuronal space are known to enhance Aβ self-aggregation in vitro, the impact of GAGs on the formation of zinc-induced amorphous Aβ aggregates has not yet been thoroughly studied. Here, employing dynamic light scattering, bis-ANS fluorimetry, and sedimentation assays, we demonstrate that heparin serving as a representative GAG modulates the kinetics of zinc-induced Aβ42 aggregation in vitro by slowing the rate of aggregate formation and aggregate size growth. By using synthetic Aβ16 peptides to model the Aβ metal-binding domain (MBD), heparin was found to effectively interact with MBDs in complex with zinc ions. We suggest that heparin adsorbs to the surface of growing zinc-induced Aβ42 aggregates via electrostatic interactions, thus creating a steric hindrance that inhibits further inclusion ...
Most Hsp70 chaperone inhibitors exert anti-cancer effects; however, their high cytotoxicity proposed the use of peptide fragments of the chaperone as safer modulators of its activity and as complements to customary drugs. One such... more
Most Hsp70 chaperone inhibitors exert anti-cancer effects; however, their high cytotoxicity proposed the use of peptide fragments of the chaperone as safer modulators of its activity and as complements to customary drugs. One such peptide, ICit-2, was found to inhibit substrate-binding and refolding activities of the chaperone. Using various approaches, we established that ICit-2 binds Hsp70, which may explain its inhibitory action. ICit-2 penetrates A-431 cancer cells and, in combination with doxorubicin (Dox), enhances the cytotoxicity and growth inhibitory effect of the drug. Similarly, using the B16 mouse melanoma model, we found that ICit-2 inhibits the rate of tumor growth by 48% compared to Dox alone, confirming that the peptide can be employed to sensitize resistant tumors to cytostatic medicines.
Our previous findings suggested that reversible thiol modifications of cysteine residues within the actuator (AD) and nucleotide binding domain (NBD) of the Na,K-ATPase may represent a powerful regulatory mechanism conveying redox- and... more
Our previous findings suggested that reversible thiol modifications of cysteine residues within the actuator (AD) and nucleotide binding domain (NBD) of the Na,K-ATPase may represent a powerful regulatory mechanism conveying redox- and oxygen-sensitivity of this multifunctional enzyme. S-glutathionylation of Cys244 in the AD and Cys 454-458-459 in the NBD inhibited the enzyme and protected cysteines' thiol groups from irreversible oxidation under hypoxic conditions. In this study mutagenesis approach was used to assess the role these cysteines play in regulation of the Na,K-ATPase hydrolytic and signaling functions. Several constructs of mouse α1 subunit of the Na,K-ATPase were produced in which Cys244, Cys 454-458-459 or Cys 244-454-458-459 were replaced by alanine. These constructs were expressed in human HEK293 cells. Non-transfected cells and those expressing murine α1 subunit were exposed to hypoxia or treated with oxidized glutathione (GSSG). Both conditions induced inhibi...
The amyloid-β peptide(1-42) (Aβ) is a key player in the development and progression of Alzheimer's disease (AD). Although much attention is paid to its role in formation of extracellular amyloid plaques and protein aggregates as well... more
The amyloid-β peptide(1-42) (Aβ) is a key player in the development and progression of Alzheimer's disease (AD). Although much attention is paid to its role in formation of extracellular amyloid plaques and protein aggregates as well as to corresponding mechanisms of their toxicity, good evidence exists that intracellular Aβ can accumulate intraneuronally and interact with intracellular target proteins. However, intracellular Aβ binding proteins as well as conditions favoring their interactions with Aβ are poorly characterized. In this study we have investigated the effect of two known pathogenic Aβ modifications, isomerization of Asp7 and phosphorylation of Ser8, on the proteomic profiles of mouse brain Aβ binding proteins. Phosphorylation of Ser8 and especially isomerization of Asp7 significantly extended the repertoire of mouse brain Aβ binding proteins. However, there were 61 proteins, common for three types of the affinity ligands. They obviously represent potential targets...
Amyloid-β peptide (Aβ) plays a central role in Alzheimer's disease (AD) pathogenesis. Besides extracellular Aβ, intraneuronal Aβ (iAβ) has been suggested to contribute to AD onset and development. Based on reported in vitro Aβ-DNA... more
Amyloid-β peptide (Aβ) plays a central role in Alzheimer's disease (AD) pathogenesis. Besides extracellular Aβ, intraneuronal Aβ (iAβ) has been suggested to contribute to AD onset and development. Based on reported in vitro Aβ-DNA interactions and nuclear localization of iAβ, the interference of iAβ with the normal DNA expression has recently been proposed as a plausible pathway by which Aβ can exert neurotoxicity. Employing the sedimentation assay, thioflavin T fluorescence, and dynamic light scattering we have studied effects of zinc ions on binding of RNA and single- and double-stranded DNA molecules to Aβ42 aggregates. It has been found that zinc ions significantly enhance the binding of RNA and DNA molecules to pre-formed β-sheet rich Aβ42 aggregates. Another type of Aβ42 aggregates, the zinc-induced amorphous aggregates, was demonstrated to also bind all types of nucleic acids tested. To evaluate the role of the Aβ metal-binding domain's histidine residues in Aβ-nuclei...
Over the last decade, it has become evident that in mammals, including humans, heat shock protein 70 (HSP70), apart from its intracellular localization, is found in extracellular space, where it may execute various protective functions.... more
Over the last decade, it has become evident that in mammals, including humans, heat shock protein 70 (HSP70), apart from its intracellular localization, is found in extracellular space, where it may execute various protective functions. Furthermore, the upregulation of HSP70 family members can be beneficial in the prevention and treatment of various human neurodegenerative diseases and cancer. Here, we demonstrate that recombinant human HSP70 after intranasal administration can penetrate various brain regions of mice in its native form and subsequently undergo rapid degradation. It was also shown that labeled HSP70 added to culture medium of different human and mouse cell lines enters the cells with strikingly different kinetics, which positively correlates with the basic levels of membrane bound Toll-like receptors (TLR) that are characteristic of these cell lines. HSP70 administration does not significantly modulate the level of TLR expression at the protein or RNA level. The degr...

And 58 more