Hub proteins in interaction networks involved in signaling pathways are known to have more disord... more Hub proteins in interaction networks involved in signaling pathways are known to have more disordered residues than non-hubs. Since the signaling mechanisms involving PPI are regulated by phosphorylation, disordered interfaces could be thought to be extremely phosphorylated. In the present study we sought to map the phosphorylated sites onto disordered regions on interacting proteins-Interactomes and non-interacting proteins-Negatomes. Dataset of non-interacting protein included 784 proteins retrieved from Negatome database 2.0. 2252 interacting proteins were retrieved from “GeneMania”. Intrinsically disordered regions were predicted with “Disopred” program. The binding interfaces were defined by “PDBePISA” server, while, phosphorylation sites were derived from “NetPhos” program. All phosphorylation sites were mapped onto protein structures using alignments calculated by the MUSCLE program. As anticipated, the extent of phosphorylation in interactomes were significantly higher in disordered regions to its ordered counter parts (p=0.04). Insights revealed that the disordered regions in negatome were sparse in comparison to those in interactomes (p<0.0024). Declined phosphorylated sites were observed in negatomes. The widespread non-flexible and ordered regions in the negatomes confer the non interacting nature of the protein in turn makes it poor participant in signal transduction that involves phosphorylation. Our study sheds light on the importance of phosphorylated sites on disordered regions as a mark to decide whether protein would possibly interact or not.
QSAR models supervised by Multiple linear regressions (MLR) and Gaussian kernel support vector ma... more QSAR models supervised by Multiple linear regressions (MLR) and Gaussian kernel support vector machines were developed to predict β2 potency for Sibenadet (Viozan™) and its derivatives along with established LABAs (Formeterol, Salmetrol) and ultra LABA Indacaterol. MLR aided linear QSAR models identified four molecular descriptors MATS6e, GATS5e, Mor17p, R7m+ related to β2 potency while descriptors like R5p+, Lop, Belp4, RDF075m were deduced in prediction of β2 potency in non-linear SVM models. Although, statistical fitness was observed with Gaussian Kernel function SVM models in potency prediction, MLR models proved to be more consistent in predictions. Further MLR and SVM models were statistically validated by internal validation methods like R2CV, RSS and MSS etc. Mechanistic study on linear QSAR models revealed regulative role of atomic autocorrelated electronegativities and polarizabilities in influencing β2 potency.
Azo dyes form substantial industrial pollutants owing to their poor biodegradation capacity. Pres... more Azo dyes form substantial industrial pollutants owing to their poor biodegradation capacity. Present study identifies azo dye detoxifying strain of bacteria from waste water near textile industries. In order to identify the azo dye degrading strain, 16S rRNA gene was sequenced from the pure bacterial culture obtained from the samples collected from textile industry area at Erode in Tamil Nadu state of India. Two novel azo dye degrading bacteria were found out of 60 samples investigated, which were respectively named Sphingomonas sp strain EMBS022 and Sphingomonas sp strain EMBS023. Isolates of Sphingomonas sp strains - EMBS022 and EMBS023 were deposited in GenBank with accession numbers ‘KF951596’ & ‘KF951597’respectively. UNAFOLD and RNA fold web servers were employed to predict the secondary structure of 16s RNA of these strains. Free energy estimate for secondary structures of 16s rRNA of strains EMBS022 and EMBS023 were ΔG = -159.00 kcal/mol and ΔG = -159.90 kcal/mol, confirming the structures to be considerably stable.
Clinical evidence shows that dual inhibition of kinases as well angiogenesis provides ideal thera... more Clinical evidence shows that dual inhibition of kinases as well angiogenesis provides ideal therapeutic option in the treatment of medullary thyroid carcinoma (MTC) than inhibiting either of these with the events separately. Although treatment with dual inhibitors has shown good clinical responses in patients with MTC, it has been associated with serious side effects. Some inhibitors are active agents for both angiogenesis or kinase activity. Owing to narrow therapeutic window of established inhibitors, the present study aims to identify high affinity dual inhibitors targeting RET and VEGFR2 respectively for kinase and angiogenesis activity. Established inhibitors like Vandetanib, Cabozantinib, Motesanib, PP121, RAF265 and Sunitinib served as query parent compounds for identification of structurally similar compounds by Tanimoto-based similarity searching with a threshold of 95% against the PubChem database. All the parent inhibitors and respective similar compounds were docked against RET and VEGFR2 in order to retrieve high affinity compounds with these two proteins. AGN-PC-0CUK9P PubCID: 59320403 a compound related to PPI21 showed almost equal affinity for RET and VEGFR2 and unlike other screened compounds with no apparent bias for either of the receptors. Further, AGN- PC-0CUK9P demonstrated appreciable interaction with both RET and VEGFR2 and superior kinase activity in addition to showed optimal ADMET properties and pharmacophore features. From our in silico investigation we suggest AGN-PC-0CUK9P as a superior dual inhibitor targeting RET and VEGFR2 with high efficacy which should be proposed for pharmacodynamic and pharmacokinetic studies for improved treatment of MTC.
16S rDNA sequencing which has gained wide popularity amongst microbiologists for the molecular ch... more 16S rDNA sequencing which has gained wide popularity amongst microbiologists for the molecular characterization and identification of newly discovered isolates provides accurate identification of isolates down to the level of sub-species (strain). Its most important advantage over the traditional biochemical characterization methods is that it can provide an accurate identification of strains with atypical phenotypic characters as well. The following work is an application of 16S rRNA gene sequencing approach to identify a novel species of Probiotic Lactobacillus acidophilus. The sample was collected from pond water samples of rural and urban areas of Krishna district, Vijayawada, Andhra Pradesh, India. Subsequently, the sample was serially diluted and the aliquots were incubated for a suitable time period following which the suspected colony was subjected to 16S rDNA sequencing. The sequence aligned against other species was concluded to be a novel, Probiotic L. acidophilus bacteria, further which were named L. acidophilus strain EMBS081 & EMBS082. After the sequence characterization, the isolate was deposited in GenBank Database, maintained by the National Centre for Biotechnology Information NCBI. The sequence can also be retrieve from EMBL and DDBJ repositories with accession numbers JX255677 and KC150145.
The present AChE inhibitors have been successful in the treatment of Alzheimer’s Diseases however... more The present AChE inhibitors have been successful in the treatment of Alzheimer’s Diseases however suffers serious side effects. Therefore in this view, the present study was sought to identify compounds with appreciable pharmacological profile targeting AChE. Analogue of Rivastigmine and Fluoxetine hybrid synthesized by Toda et al, 2003 (dataset1), and Coumarin–Tacrine hybrids synthesized by Qi Sun et al (dataset2) formed the test compounds for the present pharmacological evaluation. p-cholorophenyl substituted Rivastigmine and Fluoxetine hybrid compound (26d) from dataset 1 and –OCH3 substitute Coumarin–Tacrine hybrids (1h) from dataset 2 demonstrated superior pharmacological profile. 26 d showed superior pharmacological profile comparison to the entire compounds in either dataset owing to its better electrostatic interactions and hydrogen bonding patterns. In order to identify still better compound with pharmacological profile than 26 d and 1h, virtual screening was performed. The best docked compound (PubCId: PubCid: 68874404) showed better affinity than its parent 26 d, however showed poor ADME profile and AMES toxicity. CHEMBL2391475 (PubCid: 71699632) similar to 1h had reduced affinity in comparison to its parent compound 1h. From, our extensive analysis involving binding affinity analysis, ADMET properties predictions and pharmacophoric mappings, we report p-cholorophenyl substituted rivastigmine and fluoxetine hybrid (26d) to be a potential candidate for AcHE inhibition which in addition can overcome narrow therapeutic window of present AChE inhibitors in clinical treatment of Alzheimer’s disease.
Interdisciplinary Sciences: Computational Life Sciences. 7(2): 93-99, Jun 30, 2015
Organophosphates like chlorpyrifos, diazinon,
or malathion have become most common and indisputa... more Organophosphates like chlorpyrifos, diazinon,
or malathion have become most common and indisputably
most toxic pest control agents that adversely affects the
human nervous system even at low levels of exposure.
Because of their relatively low cost and ability to be
applied on a wide range of target insects and crop,
organophosphorus pesticides account for a large share of
all insecticides used in India, and this in turn raises severe
health concerns. In this view, the present investigation was
aimed to identify novel species of Flavobacterium bacteria
which is bestowed with the capacity to degrade pesticides
like chlorpyrifos, diazinon, or malathion. The bacterium
was isolated from agricultural soil collected from Guntur
District, Andhra Pradesh, India. The samples were serially
diluted, and the aliquots were incubated for a suitable time
following which the suspected colony was subjected to 16S
rRNA gene sequencing. The sequence thus obtained was
aligned pairwise against Flavobacterium species, which
resulted in identification of novel species of Flavobacterium
later which was named as EMBS0145 and sequence
was deposited in GenBank with Accession Number:
JN794045.
The present antipsychotic drugs have known to show serious concerns like extra pyramidal side eff... more The present antipsychotic drugs have known to show serious concerns like extra pyramidal side effects therefore, pursuit for novel antipsychotic GABAnergic drugs has lately focused on the folkloric medicine from plant derivatives as better treatment option of schizophrenia. The present study centers to identify potential inhibitors of plant origin for GABA receptor through in silico approaches. Three compound datasets were undertaken in the study. The first set consisted of seven compounds which included Magnolol, Honokiol and other plant derivatives. The second set consisted of 16 derivatives of N-diarylalkenyl-piperidinecarboxylic acid synthesized by Zheng et al., 2006. The third dataset had thirty two compounds which were Magnolol and Honokiol analogues synthesized by Fuchs et al., 2014. All the compounds were docked at the allosteric site of the GABA (A) receptor. The compounds were further tested for ADMET and biological activity. We observed Honokiol and its derivatives demonstrated superior druglike properties than any compound undertaken in the study. Further, compound 61 [2-(4-methoxyphenyl)-4-propylphenol] of dataset three - a synthetic derivative of honokiol had better profile than its parent compound. In a possible attempt to identify compound with even better efficacious compound than 61, virtual screening was performed, 135 compounds akin to compound 61 were retrieved. Interestingly none of the 135 compounds showed better druggable properties than compound 61. Our in silico pharmacological profiling of compounds is in coherence and is complemented by the findings of Fuchs et al, which also revealed compound 61 to be the good potentiator of GABA receptor.
Mammalian target of rapamycin (mTOR) is a key regulator of cell growth, proliferation and angioge... more Mammalian target of rapamycin (mTOR) is a key regulator of cell growth, proliferation and angiogenesis. mTOR signaling is frequently hyper activated in a broad spectrum of human cancers thereby making it a potential drug target. The current drugs available have been successful in inhibiting the mTOR signaling, nevertheless, show low oral bioavailability and suboptimal solubility. Considering the narrow therapeutic window of the available inhibitors, through computational approaches, the present study pursues to identify a compound with optimal oral bioavailability and better solubility properties in addition ensuing high affinity between FKBP12 and FRB domain of mTOR. Current mTOR inhibitors; Everolimus, Temsirolimus Deforolimus and Echinomycin served as parent molecules for similarity search with a threshold of 95%. The query molecules and respective similar molecules were docked at the binding cleft of FKBP12 protein. Aided by MolDock algorithm, high affinity compounds against FKBP12 were retrieved. Patch Dock supervised protein-protein interactions were established between FRB domain of mTOR and ligand (query and similar) bound and free states of FKBP12. All the similar compounds thus retrieved showed better solubility properties and enabled better complex formation of mTOR and FKBP12. In particular Everolimus similar compound PubChem ID: 57284959 showed appreciable drugs like properties bestowed with better solubility higher oral bioavailability. In addition this compound brought about enhanced interaction between FKBP12 and FRB domain of mTOR. In the study, we report Everolimus similar compound PubChem ID: 57284959 to be potential inhibitor for mTOR pathway which can overcome the affinity and solubility concerns of current mTOR drugs.
Pathogenic aspects of Chikungunya virus requires detailed study in order to develop drugs for con... more Pathogenic aspects of Chikungunya virus requires detailed study in order to develop drugs for controlling the outspread of Chikungunya infection. Previously it has been identified that Chikungunya viral envelope 1 and 2 proteins (E1 and E2) and the nonstructural protein 2 (nsP2) are involved in CHIKV pathogenesis. In this study, a reverse vaccinology approach has been used to elucidate the epitopic peptides associated with the envelope protein E2 of CHIKV. The study characterizes as well as maps B cell and T cell epitopes of the protein using various bioinformatics tools. Further, the predicted epitopes were modeled and docked with human receptors (2X40 and 1DLH) to analyze the binding affinities. The epitopes with high binding affinities for human receptors were identified as effective epitopes. We anticipate that the peptides identified as most effective epitopes from this study can be considered for designing epitope-based vaccines against Chikungunya disease.
Asian Pacific Journal of Cancer Prevention. 2015;16(9):3759-3765.
Approaches in disruption of MDM2-p53 interactions have now emerged as an important therapeutic st... more Approaches in disruption of MDM2-p53 interactions have now emerged as an important therapeutic strategy in resurrecting wild type p53 functional status. The present study highlights virtual screening strategies in identification of high affinity small molecule non-peptidic inhibitors. Nutlin3A and RG7112 belonging to compound class of Cis-imidazoline, MI219 of Spiro-oxindole class and Benzodiazepine derived TDP 665759 served as query small molecules for similarity search with a threshold of 95%. The query molecules and the similar molecules corresponding to each query were docked at the transactivation binding cleft of MDM2 protein. Aided by MolDock algorithm, high affinity compound against MDM2 was retrieved. Patch Dock supervised Protein-Protein interactions were established between MDM2 and ligand (query and similar) bound and free states of p53. Compounds with PubCid 68870345, 77819398, 71132874, and 11952782 respectively structurally similar to Nutlin3A, RG7112, Mi219 and TDP 665759 demonstrated higher affinity to MDM2 in comparison to their parent compounds. Evident from the protein-protein interaction studies, all the similar compounds except for 77819398 (similar to RG 7112) showed appreciable inhibitory potential. Of particular relevance, compound 68870345 akin to Nutlin 3A had highest inhibitory potential that respectively showed 1.3, 1.2, 1.16 and 1.26 folds higher inhibitory potential than Nutilin 3A, MI 219, RG 7112 and TDP 1665759. Compound 68870345 was further mapped for structure based pharamacophoric features. In the study, we report Cis-imidazoline derivative compound; Pubcid: 68870345 to have highest inhibitory potential in blocking MDM2-p53 interactions hitherto discovered.
Indiscriminate application of pesticides like chlorpyrifos, diazinon, or malathion contaminate th... more Indiscriminate application of pesticides like chlorpyrifos, diazinon, or malathion contaminate the soil in addition has being unsafe often it has raised severe health concerns. Conversely, microorganisms like Trichoderma, Aspergillus and Bacteria like Rhizobium Bacillus, Azotobacter, Flavobacterium etc have evolved that are endowed with degradation of pesticides aforementioned to non-toxic products. The current study pitches into identification of a novel species of Flavobacterium bacteria capable to degrade the Organophosphorous pesticides. The bacterium was isolated from agricultural soil collected from Guntur District, Andhra Pradesh, India. The samples were serially diluted and the aliquots were incubated for a suitable time following which the suspected colony was subjected to 16S rDNA sequencing. The sequence thus obtained was aligned pairwise against Flavobacterium species, which resulted in identification of novel specie of Flavobacterium later named as EMBS0145, the sequence of which was deposited in in GenBank with accession number JN794045.
Current Topics in Medicinal Chemistry. Vol 15, Issue 1, pp:50-56., 2015
Salbutamol forms an important and widely administered β2 agonist prescribed in the symptomatic tr... more Salbutamol forms an important and widely administered β2 agonist prescribed in the symptomatic treatment of bronchial asthma. Unfortunately, a subset of patients show refractoriness to it owing to ADRB2 gene variant (rs 1800888). The variant substitutes Thr to Ile at the position 164 in the β2 adrenergic receptor leading to sub-optimal binding of agonists. The present study aims to associate the Salbutamol response with the variant and select the bioactive conformer of Sabutamol with optimal binding affinity against mutated receptor by in silico approaches. To assess bronchodilator response spirometry was performed before and 15 min after Salbutamol (200 mcg) inhalation. Responders to Salbutamol were categorized if percentage reversibility was greater than or equal to 12%, while those showing FEV₁ reversibility less than 12% were classified as non-responders. Among the 344 subjects screened, 238 were responders and 106 were non-responders. The frequency of mutant allele "T" was significantly higher in case of non-responders (p < 0.05). In silico process involved generation of Salbutamol conformer ensembles supported by systematic search algorithm. 4369 conformers were generated of which only 1882 were considered bioactive conformers (threshold RMSD≤1 in reference to normalized structure of salbutamol). All the bioactive conformers were evaluated for the binding affinity against (Thr164 Ile) receptor through MolDock aided docking algorithm. One of the bioactive conformer (P.E. = -57.0038, RMSD = 0.6) demonstrated 1.54 folds greater affinity than the normal Salbutamol in the mutated receptor. The conformer identified in the present study may be put to pharmacodynamic and pharmacokinetic studies in future ahead.
Current Topics in Medicinal Chemistry. Vol 15, Issue Num 1, pp 65 - 72, 2015
Currently available antiviral drugs target the pol-encoded retroviral enzymes or integrases, in a... more Currently available antiviral drugs target the pol-encoded retroviral enzymes or integrases, in addition, inhibitors that target HIV-1 envelope-receptor interactions have also been recently approved. Recent understanding of the interactions between HIV-1 and host restriction factors has provided fresh avenues for development of novel antiviral drugs. For example, viral infectivity factor (Vif) now surfaced as an important therapeutic target in treatment of HIV infection. Vif suppresses A3G antiviral activity by targeting these proteins for polyubiquitination and proteasomal degradation. In the present study we analyzed the inhibitory potential of VEC5 and RN18 to inhibit the Vif-A3G interaction through protein- protein docking studies. Perusal of the study showed that, VEC5 and RN18 though inhibits the interaction however showed sub optimal potential. To overcome this set back, we identified 35 structural analogues of VEC5 and 18 analogues of RN18 through virtual screening approach. Analogue with PubCID 71624757 and 55358204 (AKOS006479723) -structurally akin to VEC5 and RN18 respectively showed much appreciable interaction than their respective parent compound. Evident from Vif-A3G; protein - protein docking studies, analogue PubCID 71624757 demonstrated 1.08 folds better inhibitory potential than its parent compound VEC5 while analogue PubCID 55358204 was 1.15 folds better than RN18. Further these analogues passed drug likeness filters and predicted to be non- toxic. We expect these analogues can be put to pharmacodynamic studies that can pave way the breakthrough in HIV therapeutics.
Phenytoin (PHT) and Carbamazepine (CBZ) are excellent sodium channel blockers administered in cli... more Phenytoin (PHT) and Carbamazepine (CBZ) are excellent sodium channel blockers administered in clinical treatment of epileptic seizures. However, the narrow therapeutic range and limited pharmacokinetics of these drugs have raised serious concerns in the proper management of epilepsy. To overcome this, the present study attempts to identify a candidate molecule with superior pharmacological profile than PHT and CBZ through In silico approaches. PHT and CBZ served as query small molecules for Tanimoto based similarity search with a threshold of 95% against PubChem database. Aided by MolDock algorithm, high affinity similar compound against each query was retrieved. PHT and CBZ and their respective similar were further tested for toxicity profiles, LC 50 values and biological activity. Compounds, NSC403438 and AGN-PC-0BPCBP respectively similar to PHT and CBZ demonstrated higher affinity to sodium channel protein than their respective leads. Of particular relevance, NSC403438 demonstrated highest binding affinity bestowed with least toxicity, better LC 50 values and optimal bioactivity. NSC403438 was further mapped for its structure based pharmacophoric features. In the study, we report NSC403438 as potential sodium channel blocker as a better candidate than PHT and CBZ which can be put forth for pharmacodynamic and pharmacokinetic studies.
Current Topics in Medicinal Chemistry. Vol 15, Issue 1, pp 57 - 64.
Since the discovery of Hsp90, a decade ago, it has surfaced as a potential target in breast cance... more Since the discovery of Hsp90, a decade ago, it has surfaced as a potential target in breast cancer therapy along with other cancers. In present study, we have selected seven established Hsp inhibitors viz., PU3, CCT-018159, CNF-2024, SNX-5422, NVP (AUY-922), EGCG and IPI-504 used in the treatment of cancer. Considering these seven inhibitors as a parent compound, ligand based search was carried out with 90% similarity in Pubchem database (31 million compounds). All the similar molecules belonging to respective parent compound along with similar compound were subjected to virtual screening using MolDock and PLP algorithm aided molecular docking. Compounds with highest docking rerank scores were selected and filtered through Lipinski’s drug-likeness filters and toxicity parameters. New candidate (Pubchem CID: 11363378) qualified to demonstrate considerable affinity towards Hsp90. The selected compound was further pharmcophorically incited for receptor- ligand interactions like H-bond, electrostatic, hydrophobic interactions etc.
Asian Pacific Journal of Cancer Prevention. 15(23):10137-10142., Dec 30, 2014
Apoptosis is a general phenomenon of all multicellular organisms and caspases form a group of imp... more Apoptosis is a general phenomenon of all multicellular organisms and caspases form a group of important proteins central to suicide of cells. Pathologies like cancer, Myocardial infarction, Stroke, Sepsis, Alzheimer's, Psoriasis, Parkinson and Huntington diseases are often associated with change in caspase 3 mediated apoptosis and therefore, caspases may serve as potential inhibitory targets for drug development. In the present study, two series of synthetic acetylated tetrapeptides containing aldehyde and fluromethyl keto groups respectively at the C terminus were proposed. All these compounds were evaluated for binding affinity against caspase 3 structure. In series 1 compound Ac-DEHD-CHO demonstrated appreciable and high binding affinity (Rerank Score: -138.899) against caspase 3. While in series 2 it was Ac-WEVD-FMK which showed higher binding affinity (Rerank Score: -139.317). Further these two compounds met ADMET properties and demonstrated to be non- toxic.
Inappropriate activation of the Hh signaling pathway has been implicated in the development of se... more Inappropriate activation of the Hh signaling pathway has been implicated in the development of several types of cancers including prostate, lung, pancreas, breast, brain and skin. Present study identified the binding affinities of eight established inhibitors viz., Cyclopamine, Saridegib, Itraconazole, LDE-225, TAK-441, BMS-833923 (XL139), PF-04449913 and Vismodegib targeting SMO receptor - a candidate protein involved in hedgehog pathway and sought to identify the best amongst the established inhibitors through by molecular docking. Exelxis® BMS 833923 (XL 139) demonstrated superior binding affinity aided by MolDock scoring docking algorithm. Further BMS 833923 (XL 139) was evaluated for pharmacophoric features which revealed appreciable ligand receptor interactions.
Psoriasis is one of the most prevalent chronic inflammatory diseases of the skin. The WNT5A pathw... more Psoriasis is one of the most prevalent chronic inflammatory diseases of the skin. The WNT5A pathways have been documented to play essential role in stem cell self-renewal and keratinocyte differentiation in the skin. Antagonizing the Wnt5a protein would emerge as a novel therapeutics in psoriasis treatment. In this view, we have developed and characterized series of compounds by attaching varied tertiary alkyloxy carbonyl groups at the N-terminal end of the hexapeptide (Met-Asp-Gly-Cys-Glu-Leu) bestowed to inhibit Wnt/Ca2+ signaling in psoriasis. Hexapeptide compound with 1,1-diphenylethoxy carbonyl group attached to N-terminal end of hexapeptide demonstrated highest binding affinity amongst all the evaluated compounds. The compound identified in the study can be subjected further for In vitro and In vivo studies for ADMET properties.
Interdisciplinary Sciences: Computational Life Sciences December 2014, Volume 6, Issue 4, pp 279-284
The PDB file format, is a text format characterizing the three dimensional structures of macro mo... more The PDB file format, is a text format characterizing the three dimensional structures of macro molecules available in the Protein Data Bank (PDB). Determined protein structure are found in coalition with other molecules or ions such as nucleic acids, water, ions, Drug molecules and so on, which therefore can be described in the PDB format and have been deposited in PDB database. PDB is a machine generated file, it's not human readable format, to read this file we need any computational tool to understand it. The objective of our present study is to develop a free online software for retrieval, visualization and reading of annotation of a protein 3D structure which is available in PDB database. Main aim is to create PDB file in human readable format, i.e., the information in PDB file is converted in readable sentences. It displays all possible information from a PDB file including 3D structure of that file. Programming languages and scripting languages like Perl, CSS, Javascript, Ajax, and HTML have been used for the development of PDB Explorer. The PDB Explorer directly parses the PDB file, calling methods for parsed element secondary structure element, atoms, coordinates etc. PDB Explorer is freely available at http://www.pdbexplorer.eminentbio.com/home with no requirement of log-in.
Hub proteins in interaction networks involved in signaling pathways are known to have more disord... more Hub proteins in interaction networks involved in signaling pathways are known to have more disordered residues than non-hubs. Since the signaling mechanisms involving PPI are regulated by phosphorylation, disordered interfaces could be thought to be extremely phosphorylated. In the present study we sought to map the phosphorylated sites onto disordered regions on interacting proteins-Interactomes and non-interacting proteins-Negatomes. Dataset of non-interacting protein included 784 proteins retrieved from Negatome database 2.0. 2252 interacting proteins were retrieved from “GeneMania”. Intrinsically disordered regions were predicted with “Disopred” program. The binding interfaces were defined by “PDBePISA” server, while, phosphorylation sites were derived from “NetPhos” program. All phosphorylation sites were mapped onto protein structures using alignments calculated by the MUSCLE program. As anticipated, the extent of phosphorylation in interactomes were significantly higher in disordered regions to its ordered counter parts (p=0.04). Insights revealed that the disordered regions in negatome were sparse in comparison to those in interactomes (p<0.0024). Declined phosphorylated sites were observed in negatomes. The widespread non-flexible and ordered regions in the negatomes confer the non interacting nature of the protein in turn makes it poor participant in signal transduction that involves phosphorylation. Our study sheds light on the importance of phosphorylated sites on disordered regions as a mark to decide whether protein would possibly interact or not.
QSAR models supervised by Multiple linear regressions (MLR) and Gaussian kernel support vector ma... more QSAR models supervised by Multiple linear regressions (MLR) and Gaussian kernel support vector machines were developed to predict β2 potency for Sibenadet (Viozan™) and its derivatives along with established LABAs (Formeterol, Salmetrol) and ultra LABA Indacaterol. MLR aided linear QSAR models identified four molecular descriptors MATS6e, GATS5e, Mor17p, R7m+ related to β2 potency while descriptors like R5p+, Lop, Belp4, RDF075m were deduced in prediction of β2 potency in non-linear SVM models. Although, statistical fitness was observed with Gaussian Kernel function SVM models in potency prediction, MLR models proved to be more consistent in predictions. Further MLR and SVM models were statistically validated by internal validation methods like R2CV, RSS and MSS etc. Mechanistic study on linear QSAR models revealed regulative role of atomic autocorrelated electronegativities and polarizabilities in influencing β2 potency.
Azo dyes form substantial industrial pollutants owing to their poor biodegradation capacity. Pres... more Azo dyes form substantial industrial pollutants owing to their poor biodegradation capacity. Present study identifies azo dye detoxifying strain of bacteria from waste water near textile industries. In order to identify the azo dye degrading strain, 16S rRNA gene was sequenced from the pure bacterial culture obtained from the samples collected from textile industry area at Erode in Tamil Nadu state of India. Two novel azo dye degrading bacteria were found out of 60 samples investigated, which were respectively named Sphingomonas sp strain EMBS022 and Sphingomonas sp strain EMBS023. Isolates of Sphingomonas sp strains - EMBS022 and EMBS023 were deposited in GenBank with accession numbers ‘KF951596’ & ‘KF951597’respectively. UNAFOLD and RNA fold web servers were employed to predict the secondary structure of 16s RNA of these strains. Free energy estimate for secondary structures of 16s rRNA of strains EMBS022 and EMBS023 were ΔG = -159.00 kcal/mol and ΔG = -159.90 kcal/mol, confirming the structures to be considerably stable.
Clinical evidence shows that dual inhibition of kinases as well angiogenesis provides ideal thera... more Clinical evidence shows that dual inhibition of kinases as well angiogenesis provides ideal therapeutic option in the treatment of medullary thyroid carcinoma (MTC) than inhibiting either of these with the events separately. Although treatment with dual inhibitors has shown good clinical responses in patients with MTC, it has been associated with serious side effects. Some inhibitors are active agents for both angiogenesis or kinase activity. Owing to narrow therapeutic window of established inhibitors, the present study aims to identify high affinity dual inhibitors targeting RET and VEGFR2 respectively for kinase and angiogenesis activity. Established inhibitors like Vandetanib, Cabozantinib, Motesanib, PP121, RAF265 and Sunitinib served as query parent compounds for identification of structurally similar compounds by Tanimoto-based similarity searching with a threshold of 95% against the PubChem database. All the parent inhibitors and respective similar compounds were docked against RET and VEGFR2 in order to retrieve high affinity compounds with these two proteins. AGN-PC-0CUK9P PubCID: 59320403 a compound related to PPI21 showed almost equal affinity for RET and VEGFR2 and unlike other screened compounds with no apparent bias for either of the receptors. Further, AGN- PC-0CUK9P demonstrated appreciable interaction with both RET and VEGFR2 and superior kinase activity in addition to showed optimal ADMET properties and pharmacophore features. From our in silico investigation we suggest AGN-PC-0CUK9P as a superior dual inhibitor targeting RET and VEGFR2 with high efficacy which should be proposed for pharmacodynamic and pharmacokinetic studies for improved treatment of MTC.
16S rDNA sequencing which has gained wide popularity amongst microbiologists for the molecular ch... more 16S rDNA sequencing which has gained wide popularity amongst microbiologists for the molecular characterization and identification of newly discovered isolates provides accurate identification of isolates down to the level of sub-species (strain). Its most important advantage over the traditional biochemical characterization methods is that it can provide an accurate identification of strains with atypical phenotypic characters as well. The following work is an application of 16S rRNA gene sequencing approach to identify a novel species of Probiotic Lactobacillus acidophilus. The sample was collected from pond water samples of rural and urban areas of Krishna district, Vijayawada, Andhra Pradesh, India. Subsequently, the sample was serially diluted and the aliquots were incubated for a suitable time period following which the suspected colony was subjected to 16S rDNA sequencing. The sequence aligned against other species was concluded to be a novel, Probiotic L. acidophilus bacteria, further which were named L. acidophilus strain EMBS081 & EMBS082. After the sequence characterization, the isolate was deposited in GenBank Database, maintained by the National Centre for Biotechnology Information NCBI. The sequence can also be retrieve from EMBL and DDBJ repositories with accession numbers JX255677 and KC150145.
The present AChE inhibitors have been successful in the treatment of Alzheimer’s Diseases however... more The present AChE inhibitors have been successful in the treatment of Alzheimer’s Diseases however suffers serious side effects. Therefore in this view, the present study was sought to identify compounds with appreciable pharmacological profile targeting AChE. Analogue of Rivastigmine and Fluoxetine hybrid synthesized by Toda et al, 2003 (dataset1), and Coumarin–Tacrine hybrids synthesized by Qi Sun et al (dataset2) formed the test compounds for the present pharmacological evaluation. p-cholorophenyl substituted Rivastigmine and Fluoxetine hybrid compound (26d) from dataset 1 and –OCH3 substitute Coumarin–Tacrine hybrids (1h) from dataset 2 demonstrated superior pharmacological profile. 26 d showed superior pharmacological profile comparison to the entire compounds in either dataset owing to its better electrostatic interactions and hydrogen bonding patterns. In order to identify still better compound with pharmacological profile than 26 d and 1h, virtual screening was performed. The best docked compound (PubCId: PubCid: 68874404) showed better affinity than its parent 26 d, however showed poor ADME profile and AMES toxicity. CHEMBL2391475 (PubCid: 71699632) similar to 1h had reduced affinity in comparison to its parent compound 1h. From, our extensive analysis involving binding affinity analysis, ADMET properties predictions and pharmacophoric mappings, we report p-cholorophenyl substituted rivastigmine and fluoxetine hybrid (26d) to be a potential candidate for AcHE inhibition which in addition can overcome narrow therapeutic window of present AChE inhibitors in clinical treatment of Alzheimer’s disease.
Interdisciplinary Sciences: Computational Life Sciences. 7(2): 93-99, Jun 30, 2015
Organophosphates like chlorpyrifos, diazinon,
or malathion have become most common and indisputa... more Organophosphates like chlorpyrifos, diazinon,
or malathion have become most common and indisputably
most toxic pest control agents that adversely affects the
human nervous system even at low levels of exposure.
Because of their relatively low cost and ability to be
applied on a wide range of target insects and crop,
organophosphorus pesticides account for a large share of
all insecticides used in India, and this in turn raises severe
health concerns. In this view, the present investigation was
aimed to identify novel species of Flavobacterium bacteria
which is bestowed with the capacity to degrade pesticides
like chlorpyrifos, diazinon, or malathion. The bacterium
was isolated from agricultural soil collected from Guntur
District, Andhra Pradesh, India. The samples were serially
diluted, and the aliquots were incubated for a suitable time
following which the suspected colony was subjected to 16S
rRNA gene sequencing. The sequence thus obtained was
aligned pairwise against Flavobacterium species, which
resulted in identification of novel species of Flavobacterium
later which was named as EMBS0145 and sequence
was deposited in GenBank with Accession Number:
JN794045.
The present antipsychotic drugs have known to show serious concerns like extra pyramidal side eff... more The present antipsychotic drugs have known to show serious concerns like extra pyramidal side effects therefore, pursuit for novel antipsychotic GABAnergic drugs has lately focused on the folkloric medicine from plant derivatives as better treatment option of schizophrenia. The present study centers to identify potential inhibitors of plant origin for GABA receptor through in silico approaches. Three compound datasets were undertaken in the study. The first set consisted of seven compounds which included Magnolol, Honokiol and other plant derivatives. The second set consisted of 16 derivatives of N-diarylalkenyl-piperidinecarboxylic acid synthesized by Zheng et al., 2006. The third dataset had thirty two compounds which were Magnolol and Honokiol analogues synthesized by Fuchs et al., 2014. All the compounds were docked at the allosteric site of the GABA (A) receptor. The compounds were further tested for ADMET and biological activity. We observed Honokiol and its derivatives demonstrated superior druglike properties than any compound undertaken in the study. Further, compound 61 [2-(4-methoxyphenyl)-4-propylphenol] of dataset three - a synthetic derivative of honokiol had better profile than its parent compound. In a possible attempt to identify compound with even better efficacious compound than 61, virtual screening was performed, 135 compounds akin to compound 61 were retrieved. Interestingly none of the 135 compounds showed better druggable properties than compound 61. Our in silico pharmacological profiling of compounds is in coherence and is complemented by the findings of Fuchs et al, which also revealed compound 61 to be the good potentiator of GABA receptor.
Mammalian target of rapamycin (mTOR) is a key regulator of cell growth, proliferation and angioge... more Mammalian target of rapamycin (mTOR) is a key regulator of cell growth, proliferation and angiogenesis. mTOR signaling is frequently hyper activated in a broad spectrum of human cancers thereby making it a potential drug target. The current drugs available have been successful in inhibiting the mTOR signaling, nevertheless, show low oral bioavailability and suboptimal solubility. Considering the narrow therapeutic window of the available inhibitors, through computational approaches, the present study pursues to identify a compound with optimal oral bioavailability and better solubility properties in addition ensuing high affinity between FKBP12 and FRB domain of mTOR. Current mTOR inhibitors; Everolimus, Temsirolimus Deforolimus and Echinomycin served as parent molecules for similarity search with a threshold of 95%. The query molecules and respective similar molecules were docked at the binding cleft of FKBP12 protein. Aided by MolDock algorithm, high affinity compounds against FKBP12 were retrieved. Patch Dock supervised protein-protein interactions were established between FRB domain of mTOR and ligand (query and similar) bound and free states of FKBP12. All the similar compounds thus retrieved showed better solubility properties and enabled better complex formation of mTOR and FKBP12. In particular Everolimus similar compound PubChem ID: 57284959 showed appreciable drugs like properties bestowed with better solubility higher oral bioavailability. In addition this compound brought about enhanced interaction between FKBP12 and FRB domain of mTOR. In the study, we report Everolimus similar compound PubChem ID: 57284959 to be potential inhibitor for mTOR pathway which can overcome the affinity and solubility concerns of current mTOR drugs.
Pathogenic aspects of Chikungunya virus requires detailed study in order to develop drugs for con... more Pathogenic aspects of Chikungunya virus requires detailed study in order to develop drugs for controlling the outspread of Chikungunya infection. Previously it has been identified that Chikungunya viral envelope 1 and 2 proteins (E1 and E2) and the nonstructural protein 2 (nsP2) are involved in CHIKV pathogenesis. In this study, a reverse vaccinology approach has been used to elucidate the epitopic peptides associated with the envelope protein E2 of CHIKV. The study characterizes as well as maps B cell and T cell epitopes of the protein using various bioinformatics tools. Further, the predicted epitopes were modeled and docked with human receptors (2X40 and 1DLH) to analyze the binding affinities. The epitopes with high binding affinities for human receptors were identified as effective epitopes. We anticipate that the peptides identified as most effective epitopes from this study can be considered for designing epitope-based vaccines against Chikungunya disease.
Asian Pacific Journal of Cancer Prevention. 2015;16(9):3759-3765.
Approaches in disruption of MDM2-p53 interactions have now emerged as an important therapeutic st... more Approaches in disruption of MDM2-p53 interactions have now emerged as an important therapeutic strategy in resurrecting wild type p53 functional status. The present study highlights virtual screening strategies in identification of high affinity small molecule non-peptidic inhibitors. Nutlin3A and RG7112 belonging to compound class of Cis-imidazoline, MI219 of Spiro-oxindole class and Benzodiazepine derived TDP 665759 served as query small molecules for similarity search with a threshold of 95%. The query molecules and the similar molecules corresponding to each query were docked at the transactivation binding cleft of MDM2 protein. Aided by MolDock algorithm, high affinity compound against MDM2 was retrieved. Patch Dock supervised Protein-Protein interactions were established between MDM2 and ligand (query and similar) bound and free states of p53. Compounds with PubCid 68870345, 77819398, 71132874, and 11952782 respectively structurally similar to Nutlin3A, RG7112, Mi219 and TDP 665759 demonstrated higher affinity to MDM2 in comparison to their parent compounds. Evident from the protein-protein interaction studies, all the similar compounds except for 77819398 (similar to RG 7112) showed appreciable inhibitory potential. Of particular relevance, compound 68870345 akin to Nutlin 3A had highest inhibitory potential that respectively showed 1.3, 1.2, 1.16 and 1.26 folds higher inhibitory potential than Nutilin 3A, MI 219, RG 7112 and TDP 1665759. Compound 68870345 was further mapped for structure based pharamacophoric features. In the study, we report Cis-imidazoline derivative compound; Pubcid: 68870345 to have highest inhibitory potential in blocking MDM2-p53 interactions hitherto discovered.
Indiscriminate application of pesticides like chlorpyrifos, diazinon, or malathion contaminate th... more Indiscriminate application of pesticides like chlorpyrifos, diazinon, or malathion contaminate the soil in addition has being unsafe often it has raised severe health concerns. Conversely, microorganisms like Trichoderma, Aspergillus and Bacteria like Rhizobium Bacillus, Azotobacter, Flavobacterium etc have evolved that are endowed with degradation of pesticides aforementioned to non-toxic products. The current study pitches into identification of a novel species of Flavobacterium bacteria capable to degrade the Organophosphorous pesticides. The bacterium was isolated from agricultural soil collected from Guntur District, Andhra Pradesh, India. The samples were serially diluted and the aliquots were incubated for a suitable time following which the suspected colony was subjected to 16S rDNA sequencing. The sequence thus obtained was aligned pairwise against Flavobacterium species, which resulted in identification of novel specie of Flavobacterium later named as EMBS0145, the sequence of which was deposited in in GenBank with accession number JN794045.
Current Topics in Medicinal Chemistry. Vol 15, Issue 1, pp:50-56., 2015
Salbutamol forms an important and widely administered β2 agonist prescribed in the symptomatic tr... more Salbutamol forms an important and widely administered β2 agonist prescribed in the symptomatic treatment of bronchial asthma. Unfortunately, a subset of patients show refractoriness to it owing to ADRB2 gene variant (rs 1800888). The variant substitutes Thr to Ile at the position 164 in the β2 adrenergic receptor leading to sub-optimal binding of agonists. The present study aims to associate the Salbutamol response with the variant and select the bioactive conformer of Sabutamol with optimal binding affinity against mutated receptor by in silico approaches. To assess bronchodilator response spirometry was performed before and 15 min after Salbutamol (200 mcg) inhalation. Responders to Salbutamol were categorized if percentage reversibility was greater than or equal to 12%, while those showing FEV₁ reversibility less than 12% were classified as non-responders. Among the 344 subjects screened, 238 were responders and 106 were non-responders. The frequency of mutant allele "T" was significantly higher in case of non-responders (p < 0.05). In silico process involved generation of Salbutamol conformer ensembles supported by systematic search algorithm. 4369 conformers were generated of which only 1882 were considered bioactive conformers (threshold RMSD≤1 in reference to normalized structure of salbutamol). All the bioactive conformers were evaluated for the binding affinity against (Thr164 Ile) receptor through MolDock aided docking algorithm. One of the bioactive conformer (P.E. = -57.0038, RMSD = 0.6) demonstrated 1.54 folds greater affinity than the normal Salbutamol in the mutated receptor. The conformer identified in the present study may be put to pharmacodynamic and pharmacokinetic studies in future ahead.
Current Topics in Medicinal Chemistry. Vol 15, Issue Num 1, pp 65 - 72, 2015
Currently available antiviral drugs target the pol-encoded retroviral enzymes or integrases, in a... more Currently available antiviral drugs target the pol-encoded retroviral enzymes or integrases, in addition, inhibitors that target HIV-1 envelope-receptor interactions have also been recently approved. Recent understanding of the interactions between HIV-1 and host restriction factors has provided fresh avenues for development of novel antiviral drugs. For example, viral infectivity factor (Vif) now surfaced as an important therapeutic target in treatment of HIV infection. Vif suppresses A3G antiviral activity by targeting these proteins for polyubiquitination and proteasomal degradation. In the present study we analyzed the inhibitory potential of VEC5 and RN18 to inhibit the Vif-A3G interaction through protein- protein docking studies. Perusal of the study showed that, VEC5 and RN18 though inhibits the interaction however showed sub optimal potential. To overcome this set back, we identified 35 structural analogues of VEC5 and 18 analogues of RN18 through virtual screening approach. Analogue with PubCID 71624757 and 55358204 (AKOS006479723) -structurally akin to VEC5 and RN18 respectively showed much appreciable interaction than their respective parent compound. Evident from Vif-A3G; protein - protein docking studies, analogue PubCID 71624757 demonstrated 1.08 folds better inhibitory potential than its parent compound VEC5 while analogue PubCID 55358204 was 1.15 folds better than RN18. Further these analogues passed drug likeness filters and predicted to be non- toxic. We expect these analogues can be put to pharmacodynamic studies that can pave way the breakthrough in HIV therapeutics.
Phenytoin (PHT) and Carbamazepine (CBZ) are excellent sodium channel blockers administered in cli... more Phenytoin (PHT) and Carbamazepine (CBZ) are excellent sodium channel blockers administered in clinical treatment of epileptic seizures. However, the narrow therapeutic range and limited pharmacokinetics of these drugs have raised serious concerns in the proper management of epilepsy. To overcome this, the present study attempts to identify a candidate molecule with superior pharmacological profile than PHT and CBZ through In silico approaches. PHT and CBZ served as query small molecules for Tanimoto based similarity search with a threshold of 95% against PubChem database. Aided by MolDock algorithm, high affinity similar compound against each query was retrieved. PHT and CBZ and their respective similar were further tested for toxicity profiles, LC 50 values and biological activity. Compounds, NSC403438 and AGN-PC-0BPCBP respectively similar to PHT and CBZ demonstrated higher affinity to sodium channel protein than their respective leads. Of particular relevance, NSC403438 demonstrated highest binding affinity bestowed with least toxicity, better LC 50 values and optimal bioactivity. NSC403438 was further mapped for its structure based pharmacophoric features. In the study, we report NSC403438 as potential sodium channel blocker as a better candidate than PHT and CBZ which can be put forth for pharmacodynamic and pharmacokinetic studies.
Current Topics in Medicinal Chemistry. Vol 15, Issue 1, pp 57 - 64.
Since the discovery of Hsp90, a decade ago, it has surfaced as a potential target in breast cance... more Since the discovery of Hsp90, a decade ago, it has surfaced as a potential target in breast cancer therapy along with other cancers. In present study, we have selected seven established Hsp inhibitors viz., PU3, CCT-018159, CNF-2024, SNX-5422, NVP (AUY-922), EGCG and IPI-504 used in the treatment of cancer. Considering these seven inhibitors as a parent compound, ligand based search was carried out with 90% similarity in Pubchem database (31 million compounds). All the similar molecules belonging to respective parent compound along with similar compound were subjected to virtual screening using MolDock and PLP algorithm aided molecular docking. Compounds with highest docking rerank scores were selected and filtered through Lipinski’s drug-likeness filters and toxicity parameters. New candidate (Pubchem CID: 11363378) qualified to demonstrate considerable affinity towards Hsp90. The selected compound was further pharmcophorically incited for receptor- ligand interactions like H-bond, electrostatic, hydrophobic interactions etc.
Asian Pacific Journal of Cancer Prevention. 15(23):10137-10142., Dec 30, 2014
Apoptosis is a general phenomenon of all multicellular organisms and caspases form a group of imp... more Apoptosis is a general phenomenon of all multicellular organisms and caspases form a group of important proteins central to suicide of cells. Pathologies like cancer, Myocardial infarction, Stroke, Sepsis, Alzheimer's, Psoriasis, Parkinson and Huntington diseases are often associated with change in caspase 3 mediated apoptosis and therefore, caspases may serve as potential inhibitory targets for drug development. In the present study, two series of synthetic acetylated tetrapeptides containing aldehyde and fluromethyl keto groups respectively at the C terminus were proposed. All these compounds were evaluated for binding affinity against caspase 3 structure. In series 1 compound Ac-DEHD-CHO demonstrated appreciable and high binding affinity (Rerank Score: -138.899) against caspase 3. While in series 2 it was Ac-WEVD-FMK which showed higher binding affinity (Rerank Score: -139.317). Further these two compounds met ADMET properties and demonstrated to be non- toxic.
Inappropriate activation of the Hh signaling pathway has been implicated in the development of se... more Inappropriate activation of the Hh signaling pathway has been implicated in the development of several types of cancers including prostate, lung, pancreas, breast, brain and skin. Present study identified the binding affinities of eight established inhibitors viz., Cyclopamine, Saridegib, Itraconazole, LDE-225, TAK-441, BMS-833923 (XL139), PF-04449913 and Vismodegib targeting SMO receptor - a candidate protein involved in hedgehog pathway and sought to identify the best amongst the established inhibitors through by molecular docking. Exelxis® BMS 833923 (XL 139) demonstrated superior binding affinity aided by MolDock scoring docking algorithm. Further BMS 833923 (XL 139) was evaluated for pharmacophoric features which revealed appreciable ligand receptor interactions.
Psoriasis is one of the most prevalent chronic inflammatory diseases of the skin. The WNT5A pathw... more Psoriasis is one of the most prevalent chronic inflammatory diseases of the skin. The WNT5A pathways have been documented to play essential role in stem cell self-renewal and keratinocyte differentiation in the skin. Antagonizing the Wnt5a protein would emerge as a novel therapeutics in psoriasis treatment. In this view, we have developed and characterized series of compounds by attaching varied tertiary alkyloxy carbonyl groups at the N-terminal end of the hexapeptide (Met-Asp-Gly-Cys-Glu-Leu) bestowed to inhibit Wnt/Ca2+ signaling in psoriasis. Hexapeptide compound with 1,1-diphenylethoxy carbonyl group attached to N-terminal end of hexapeptide demonstrated highest binding affinity amongst all the evaluated compounds. The compound identified in the study can be subjected further for In vitro and In vivo studies for ADMET properties.
Interdisciplinary Sciences: Computational Life Sciences December 2014, Volume 6, Issue 4, pp 279-284
The PDB file format, is a text format characterizing the three dimensional structures of macro mo... more The PDB file format, is a text format characterizing the three dimensional structures of macro molecules available in the Protein Data Bank (PDB). Determined protein structure are found in coalition with other molecules or ions such as nucleic acids, water, ions, Drug molecules and so on, which therefore can be described in the PDB format and have been deposited in PDB database. PDB is a machine generated file, it's not human readable format, to read this file we need any computational tool to understand it. The objective of our present study is to develop a free online software for retrieval, visualization and reading of annotation of a protein 3D structure which is available in PDB database. Main aim is to create PDB file in human readable format, i.e., the information in PDB file is converted in readable sentences. It displays all possible information from a PDB file including 3D structure of that file. Programming languages and scripting languages like Perl, CSS, Javascript, Ajax, and HTML have been used for the development of PDB Explorer. The PDB Explorer directly parses the PDB file, calling methods for parsed element secondary structure element, atoms, coordinates etc. PDB Explorer is freely available at http://www.pdbexplorer.eminentbio.com/home with no requirement of log-in.
Uploads
Papers by Anuraj Nayarisseri
substituted Rivastigmine and Fluoxetine hybrid compound (26d) from dataset 1 and –OCH3 substitute Coumarin–Tacrine hybrids (1h) from dataset 2 demonstrated superior pharmacological profile. 26 d showed superior pharmacological profile comparison to
the entire compounds in either dataset owing to its better electrostatic interactions and hydrogen bonding patterns. In order to identify still better compound with pharmacological profile than 26 d and 1h, virtual screening was performed. The best docked compound (PubCId: PubCid: 68874404) showed better affinity than its parent 26 d, however showed poor ADME profile and AMES toxicity. CHEMBL2391475 (PubCid: 71699632) similar to 1h had reduced affinity in comparison to its parent compound 1h. From, our extensive analysis involving binding affinity analysis, ADMET properties predictions and pharmacophoric mappings, we report p-cholorophenyl substituted rivastigmine and fluoxetine hybrid (26d) to be a potential candidate for AcHE inhibition which in addition can overcome narrow therapeutic window of present AChE inhibitors in clinical treatment of Alzheimer’s disease.
or malathion have become most common and indisputably
most toxic pest control agents that adversely affects the
human nervous system even at low levels of exposure.
Because of their relatively low cost and ability to be
applied on a wide range of target insects and crop,
organophosphorus pesticides account for a large share of
all insecticides used in India, and this in turn raises severe
health concerns. In this view, the present investigation was
aimed to identify novel species of Flavobacterium bacteria
which is bestowed with the capacity to degrade pesticides
like chlorpyrifos, diazinon, or malathion. The bacterium
was isolated from agricultural soil collected from Guntur
District, Andhra Pradesh, India. The samples were serially
diluted, and the aliquots were incubated for a suitable time
following which the suspected colony was subjected to 16S
rRNA gene sequencing. The sequence thus obtained was
aligned pairwise against Flavobacterium species, which
resulted in identification of novel species of Flavobacterium
later which was named as EMBS0145 and sequence
was deposited in GenBank with Accession Number:
JN794045.
substituted Rivastigmine and Fluoxetine hybrid compound (26d) from dataset 1 and –OCH3 substitute Coumarin–Tacrine hybrids (1h) from dataset 2 demonstrated superior pharmacological profile. 26 d showed superior pharmacological profile comparison to
the entire compounds in either dataset owing to its better electrostatic interactions and hydrogen bonding patterns. In order to identify still better compound with pharmacological profile than 26 d and 1h, virtual screening was performed. The best docked compound (PubCId: PubCid: 68874404) showed better affinity than its parent 26 d, however showed poor ADME profile and AMES toxicity. CHEMBL2391475 (PubCid: 71699632) similar to 1h had reduced affinity in comparison to its parent compound 1h. From, our extensive analysis involving binding affinity analysis, ADMET properties predictions and pharmacophoric mappings, we report p-cholorophenyl substituted rivastigmine and fluoxetine hybrid (26d) to be a potential candidate for AcHE inhibition which in addition can overcome narrow therapeutic window of present AChE inhibitors in clinical treatment of Alzheimer’s disease.
or malathion have become most common and indisputably
most toxic pest control agents that adversely affects the
human nervous system even at low levels of exposure.
Because of their relatively low cost and ability to be
applied on a wide range of target insects and crop,
organophosphorus pesticides account for a large share of
all insecticides used in India, and this in turn raises severe
health concerns. In this view, the present investigation was
aimed to identify novel species of Flavobacterium bacteria
which is bestowed with the capacity to degrade pesticides
like chlorpyrifos, diazinon, or malathion. The bacterium
was isolated from agricultural soil collected from Guntur
District, Andhra Pradesh, India. The samples were serially
diluted, and the aliquots were incubated for a suitable time
following which the suspected colony was subjected to 16S
rRNA gene sequencing. The sequence thus obtained was
aligned pairwise against Flavobacterium species, which
resulted in identification of novel species of Flavobacterium
later which was named as EMBS0145 and sequence
was deposited in GenBank with Accession Number:
JN794045.