Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Henrietta Swan Leavitt

Henrietta Swan Leavitt (/ˈlɛvɪt/; July 4, 1868 – December 12, 1921[2]) was an American astronomer.[1] Her discovery of how to effectively measure vast distances to remote galaxies led to a shift in the scale and understanding of the scale and the nature of the universe.[3] Nomination of Leavitt for the Nobel Prize had to be halted because of her death.[4][5]

Henrietta Swan Leavitt
Upper body and face of Henrietta Swan Leavitt
Leavitt, c. 1898
Born(1868-07-04)July 4, 1868
DiedDecember 12, 1921(1921-12-12) (aged 53)
Education
Known forLeavitt's Law:[1] the period-luminosity relationship for Cepheid variables
Scientific career
FieldsAstronomy
InstitutionsHarvard University, Oberlin College

A graduate of Radcliffe College, she worked at the Harvard College Observatory as a human computer, tasked with measuring photographic plates to catalog the positions and brightness of stars. This work led her to discover the relation between the luminosity and the period of Cepheid variables. Leavitt's discovery provided astronomers with the first standard candle with which to measure the distance to other galaxies.[6][7]

Before Leavitt discovered the period-luminosity relationship for Cepheid variables (sometimes referred to as Leavitt's Law), the only techniques available to astronomers for measuring the distance to a star were based on stellar parallax. Such techniques can only be used for measuring distances out to several hundred light years. Leavitt's great insight was that while no one knew the distance to the Small Magellanic Cloud, all its stars must be roughly the same distance from Earth. Therefore, a relationship she discovered in it, between the period of certain variable stars (Cepheids) and their apparent brightness, reflected a relationship in their absolute brightness. Once calibrated by measuring the distance to a nearby star of the same type via parallax, her discovery became a measuring stick with vastly greater reach.[8]

After Leavitt's death, Edwin Hubble found Cepheids in several nebulae, including the Andromeda Nebula, and, using Leavitt's Law, calculated that their distance was far too great to be part of the Milky Way and were separate galaxies in their own right. This settled astronomy's Great Debate over the size of the universe. Hubble later used Leavitt's Law, together with galactic redshifts, to establish that the universe is expanding (see Hubble's law).

Early life and education

edit
 
The observatory at Harvard where Henrietta Swan Leavitt worked

Henrietta Swan Leavitt was born in Lancaster, Massachusetts, the daughter of Henrietta Swan Kendrick and Congregational church minister George Roswell Leavitt.[9] She was a descendant of Deacon John Leavitt, an English Puritan tailor, who settled in the Massachusetts Bay Colony in the early seventeenth century.[10] (In the early Massachusetts records the family name was spelled "Levett".) Henrietta Leavitt remained deeply religious and committed to her church throughout her life.[11]

Leavitt attended Oberlin College for two years before transferring to Harvard University's Society for the Collegiate Instruction of Women (later Radcliffe College), where she received a bachelor degree in 1892.[4] At Oberlin and Harvard, Leavitt studied a broad curriculum that included Latin and classical Greek, fine arts, philosophy, analytic geometry, and calculus.[3][failed verification] It wasn't until her fourth year of college that Leavitt took a course in astronomy, in which she earned an A−.[5]: 27 

 
Henrietta Leavitt (third from left) is shown working among "The Harvard Computers" who assisted astronomer Edward Charles Pickering at the Harvard College Observatory. The assistants also included Annie Jump Cannon, Williamina Fleming, and Antonia Maury.

Leavitt also began working as volunteer assistant, one of the "computers" at the Harvard College Observatory.[12] In 1902, she was hired by the director of the observatory, Edward Charles Pickering, to measure and catalog the brightness of stars as they appeared in the observatory's photographic plate collection. (In the early 1900s, women were not allowed to operate telescopes,[13] but the scientific data were on the photographic plates.)[14][dubiousdiscuss]

In 1893, Leavitt obtained credits toward a graduate degree in astronomy for her work at the Harvard College Observatory, but due to chronic illness, she never completed that degree.[15] In 1898, she became a member of the Harvard staff. Leavitt left the observatory to make two trips to Europe and completed a stint as an art assistant at Beloit College in Wisconsin. At this time, she contracted an illness that led to progressive hearing loss.[16][17]

Astronomical career

edit
 
Leavitt working at her desk in the Harvard College Observatory [17]

Leavitt returned to the Harvard College Observatory in 1903. Because Leavitt was financially independent, Pickering initially did not have to pay her. Later, she received $0.30 (equivalent to $10.17 in 2023) an hour for her work,[5]: 32  and only $10.50 (equivalent to $356.07 in 2023) per week. She was reportedly "hard-working, serious-minded …, little given to frivolous pursuits and selflessly devoted to her family, her church, and her career."[3] At the Harvard Observatory, Leavitt worked alongside Annie Jump Cannon, who also was deaf.[18]

Pickering assigned Leavitt to study variable stars of the Small and Large Magellanic Clouds, as recorded on photographic plates taken with the Bruce Astrograph of the Boyden Station of the Harvard Observatory in Arequipa, Peru. She identified 1,777 variable stars. In 1908, Leavitt published the results of her studies in the Annals of the Astronomical Observatory of Harvard College, noting that the brighter variables had the longer period.[6]

 
Plot from a paper prepared by Leavitt in 1912 - The horizontal axis is the logarithm of the period of the corresponding Cepheid, and the vertical axis is its magnitude. The lines drawn connect points corresponding respectively to the stars' minimum and maximum brightness.[7][19]

In a 1912 paper, Leavitt examined the relationship between the periods and the brightness of a sample of 25 of the Cepheids variables in the Small Magellanic Cloud. The paper was communicated and signed by Edward Pickering, but the first sentence indicates that it was "prepared by Miss Leavitt".[7] Leavitt made a graph of magnitude versus logarithm of period and determined that, in her own words,

A straight line can be readily drawn among each of the two series of points corresponding to maxima and minima, thus showing that there is a simple relation between the brightness of the Cepheid variables and their periods.[7]

Leavitt then used the simplifying assumption that all of the Cepheids within the Small Magellanic Cloud were at approximately the same distance, so that their intrinsic brightness could be deduced from their apparent brightness as registered in the photographic plates, up to a scale factor, since the distance to the Magellanic Clouds were as yet unknown. She expressed the hope that parallaxes to some Cepheids would be measured. This soon occurred,[8] allowing her period-luminosity scale to be calibrated.[7] This reasoning allowed Leavitt to establish that the logarithm of the period is linearly related to the logarithm of the star's average intrinsic optical luminosity (the amount of power radiated by the star in the visible spectrum).[20]

Henrietta found that Delta Cepheus was the "standard candle" that had long been sought by astronomers. A similar five-day cepheid variable in the Small Magellanic cloud she found to be about one ten-thousandth as bright as our five-day Delta Cepheus. Using the inverse-square law, she calculated that the Small Magellanic cloud was 100 times as far away as Delta Cepheus, thus having discovered a way to calculate the distance to another galaxy.

Leavitt also developed, and continued to refine, the Harvard Standard for photographic measurements, a logarithmic scale that orders stars by brightness greater than 17 magnitudes. She initially analyzed 299 plates from 13 telescopes to construct her scale, which was accepted by the International Committee of Photographic Magnitudes in 1913.[21]

In 1913, Leavitt discovered T Pyxidis, a recurrent nova in the constellation Pyxis, and one of the most frequent recurrent novae in the sky, with eruptions observed in 1890, 1902, 1920, 1944, 1967, and 2011.[22]

Leavitt was a member of Phi Beta Kappa, the American Association of University Women, the American Astronomical and Astrophysical Society, the American Association for the Advancement of Science, and an honorary member of the American Association of Variable Star Observers. In 1921, when Harlow Shapley took over as director of the observatory, Leavitt was made head of stellar photometry. By the end of that year she had died from cancer.[5]: 89 

Scientific impact

edit
 
Leavitt making measurements in 1921

According to science writer Jeremy Bernstein, "variable stars had been of interest for years, but when she was studying those plates, I doubt Pickering thought she would make a significant discovery—one that would eventually change astronomy."[23] The period–luminosity relationship for Cepheids, now known as "Leavitt's law", made the stars the first "standard candle" in astronomy, allowing scientists to compute the distances to stars too remote for stellar parallax observations to be useful. One year after Leavitt reported her results, Ejnar Hertzsprung determined the distance of several Cepheids in the Milky Way; with this calibration, the distance to any Cepheid could be determined accurately.[8]

Cepheids were soon detected in other galaxies, such as Andromeda (notably by Edwin Hubble in 1923–24), and they became an important part of the evidence that "spiral nebulae" are independent galaxies located far outside of the Milky Way. Thus, Leavitt's discovery would forever change humanity's picture of the universe, as it prompted Harlow Shapley to move the Sun from the center of the galaxy in the "Great Debate" and Edwin Hubble to move the Milky Way galaxy from the center of the universe.

Leavitt's discovery of an accurate way to measure distances on an inter-galactic scale, paved the way for modern astronomy's understanding of the structure and scale of the universe.[3] The accomplishments of Edwin Hubble, the American astronomer who established that the universe is expanding, also were made possible by Leavitt's groundbreaking research.

Hubble often said that Leavitt deserved the Nobel Prize for her work.[24] Mathematician Gösta Mittag-Leffler, a member of the Swedish Academy of Sciences, tried to nominate her for that prize in 1925, only to learn that she had died of cancer three years earlier.[4][5]: 118  (The Nobel Prize is not awarded posthumously.)

Cepheid variables allow astronomers to measure distances up to about 60 million light years. Even greater distances can now be measured by using the theoretical maximum mass of white dwarfs calculated by Subrahmanyan Chandrasekhar.[25][26]

Illness and death

edit
 
The Leavitt family monument in Cambridge Cemetery

Leavitt's scientific work at Harvard was frequently interrupted by illness and family obligations. Her early death at the age of 53, from stomach cancer,[27] was seen as a tragedy by her colleagues for reasons that went beyond her scientific achievements. Her colleague Solon I. Bailey wrote in his obituary for Leavitt that "she had the happy, joyful, faculty of appreciating all that was worthy and lovable in others, and was possessed of a nature so full of sunshine that, to her, all of life became beautiful and full of meaning."[5]: 28 

She was buried in the Leavitt family plot at Cambridge Cemetery in Cambridge, Massachusetts."Sitting at the top of a gentle hill", writes George Johnson in his biography of Leavitt, "the spot is marked by a tall hexagonal monument, on top of which sits a globe cradled on a draped marble pedestal. Her uncle Erasmus Darwin Leavitt and his family also are buried there, along with other Leavitts." A plaque memorializing Henrietta and her two siblings, Mira and Roswell, is mounted on one side of the monument. Nearby are the graves of Henry and William James.[5]: 90 

Posthumous honors

edit
edit

Anna Von Mertens designed a book-based work of art, Attention Is Discovery: The Life and Legacy of Henrietta Leavitt. The pages weave Von Merton's artistic interpretations of Leavitt's work with photos and descriptions of the work of Leavitt and her fellow Harvard Computers.[31]

George Johnson wrote a 2005 biography, Miss Leavitt's Stars, which showcases the triumphs of women's progress in science through the story of Leavitt.[32]

Robert Burleigh wrote the 2013 biography Look Up!: Henrietta Leavitt, Pioneering Woman Astronomer for a younger audience. It is written for four- to eight-year-olds.[33]

Lauren Gunderson wrote a 2015 play, Silent Sky, which followed Leavitt's journey from her acceptance at Harvard to her death.[34]

Theo Strassell wrote a play, The Troubling Things We Do, an absurdist piece that details the life of Henrietta Leavitt, among other scientists from her era.[35]

Dava Sobel's book The Glass Universe chronicles the work of the women analyzing images taken of the stars at the Harvard College Observatory.[36]

The BBC included Leavitt in their Missed Genius series designed to celebrate individuals from diverse backgrounds who have had a profound effect on our world.[13]

Central Square Theater commissioned a play, The Women Who Mapped The Stars, by Joyce Van Dyke, as part of the Brit D'Arbeloff Women in Science Production Series, staged by the Nora Theatre Company. The play features Leavitt's story, among others.[37]

See also

edit

References

edit
  1. ^ a b Johnson, Kirk (March 27, 2024). "Overlooked No More: Henrietta Leavitt, Who Unraveled Mysteries of the Stars - The portrait that emerged from her discovery, called Leavitt's Law, showed that the universe was hundreds of times bigger than astronomers had imagined". The New York Times. Archived from the original on March 27, 2024. Retrieved March 28, 2024.
  2. ^ "Henrietta Swan Leavitt – Biography". Maths History. August 2017. Retrieved December 10, 2022.
  3. ^ a b c d "1912: Henrietta Leavitt Discovers the Distance Key." Everyday Cosmology. N.p., n.d. Web. October 20, 2014. "1912: Henrietta Leavitt Discovers the Distance Key". Everyday Cosmology. Archived from the original on November 11, 2020. Retrieved January 1, 2020.
  4. ^ a b c Singh, Simon (2005). Big Bang: The Origin of the Universe. Harper Perennial. Bibcode:2004biba.book.....S. ISBN 978-0-00-715252-0.
  5. ^ a b c d e f g Johnson, George (2005). Miss Leavitt's Stars: The Untold Story of the Woman Who Discovered How To Measure the Universe (1st ed.). New York: Norton. ISBN 978-0-393-05128-5.
  6. ^ a b Leavitt, Henrietta S. (1908). "1777 variables in the Magellanic Clouds". Annals of Harvard College Observatory. 60: 87–108. Bibcode:1908AnHar..60...87L.
  7. ^ a b c d e Leavitt, Henrietta S.; Pickering, Edward C. (March 1912). "Periods of 25 Variable Stars in the Small Magellanic Cloud". Harvard College Observatory Circular. 173: 1–3. Bibcode:1912HarCi.173....1L.
  8. ^ a b c Fernie, J.D. (December 1969). "The Period–Luminosity Relation: A Historical Review". Publications of the Astronomical Society of the Pacific. 81 (483): 707. Bibcode:1969PASP...81..707F. doi:10.1086/128847.
  9. ^ Lamb, Gregory M. (July 5, 2005). "Before computers, there were these humans..." Christian Science Monitor. Retrieved January 1, 2020.
  10. ^ Byers, Nina, ed. (2006). Out of the Shadows: Contributions of Twentieth-century Women to Physics (Reprint ed.). Cambridge University Press. p. 62. ISBN 978-0-521-82197-1.
  11. ^ Alan Lightman (October 22, 2010). The Discoveries: Great Breakthroughs in 20th-Century Science. Knopf Canada. pp. 175–. ISBN 978-0-307-36986-4.
  12. ^ "Henrietta Swan Leavitt | Biography & Facts | Britannica". www.britannica.com. Retrieved May 2, 2023.
  13. ^ a b McNeill, Leila. "The 'star-fiend' who unlocked the Universe". www.bbc.com. Retrieved December 27, 2022.
  14. ^ Gross, Liza. "Super Novas: Looking at the Sky Through a Glass Ceiling: Women in Astronomy". Origins: Hubble Telescope: A View To The Edge Of Space. Exploratorium. Retrieved January 1, 2020.
  15. ^ Kidwell, Peggy Aldrich (2000). "Leavitt, Henrietta Swan". American National Biography Online. Oxford University Press. doi:10.1093/anb/9780198606697.article.1300973.
  16. ^ Hockey, Thomas (2007). Biographical Encyclopedia of Astronomers. New York: Springer-Verlag. ISBN 978-0-387-35133-9.
  17. ^ a b Hamblin, Jacob Darwin (2005). Science in the Early Twentieth Century. ABC-CLIO. pp. 181–184. ISBN 978-1-85109-665-7.
  18. ^ Sobel, Dava (2016). The Glass Universe. Viking. p. 113. ISBN 9780698148697.
  19. ^ Malatesta, Kerri (April 13, 2010). "Delta Cephei". American Association of Variable Star Observers. Retrieved January 1, 2020.
  20. ^ Madore, Barry F.; Rigby, Jane; Freedman, Wendy L.; Persson, S. E.; Sturch, Laura; Mager, Violet (2009). "The Cepheid Period–Luminosity Relation (The Leavitt Law) at Mid-Infrared Wavelengths. III. Cepheids in NGC 6822". The Astrophysical Journal. 693 (1): 936–939. arXiv:0812.0186. Bibcode:2009ApJ...693..936M. doi:10.1088/0004-637X/693/1/936. S2CID 6028335.
  21. ^ "Henrietta Leavitt". SheIsAnAstronomer.org. Retrieved January 1, 2020.
  22. ^ Leavitt, Henrietta S.; Pickering, Edward C. (May 1913). "25 New Variable Stars, Principally in Harvard Maps 39 and 45". Harvard College Observatory Circular. 179: 1–4. Bibcode:1913HarCi.179....1L.
  23. ^ Bernstein, Jeremy (July 17, 2005). "Book review: George Johnson's Miss Leavitt's Stars". Los Angeles Times. Retrieved January 1, 2020.
  24. ^ Ventrudo, Brian (November 19, 2009). "Mile Markers to the Galaxies". One-Minute Astronomer. Archived from the original on November 9, 2010. Retrieved January 1, 2020.
  25. ^ Expandierende Raumzeit und Dunkle Energie, de:Josef M. Gaßner, about Henrietta Leavitt, March 15, 2016.
  26. ^ Expandierende Raumzeit und Dunkle Energie, de:Josef M. Gaßner, about Subrahmanyan Chandrasekhar, March 15, 2016.
  27. ^ "Henrietta Swan Leavitt". Famous Scientists. Retrieved January 1, 2020.
  28. ^ Schmadel, Lutz (2003). Dictionary of Minor Planet Names, Volume 1. Springer Science & Business Media. p. 461. ISBN 9783540002383.
  29. ^ "Moon Nomenclature". NASA. Archived from the original on February 23, 2013. Retrieved January 1, 2020.
  30. ^ @superasassn (September 20, 2017). "Our new "Henrietta Leavitt" telescope now being deployed at @LCO_Global site @mcdonaldobs. HET big dome in the background. @MooreFound" (Tweet) – via Twitter.
  31. ^ "Attention Is Discovery: The Life and Legacy of Henrietta Leavitt". The MIT Press. September 17, 2024. Retrieved October 19, 2024.
  32. ^ "Measuring the Universe in 'Miss Leavitt's Stars'". NPR. July 10, 2015. Retrieved January 1, 2020.
  33. ^ Burleigh, Robert (2013). Look Up!. Simon & Schuster/Paula Wiseman Books. ISBN 9781416958192.
  34. ^ Jones, Kenneth (December 28, 2010). "Silent Sky, About a Female Astronomer's Discovery, Will Premiere at South Coast Rep". Retrieved January 1, 2020.
  35. ^ strassell, theo (2021). The Troubling Things We Do.
  36. ^ Davis, Nicola (January 8, 2017). "The Glass Universe by Dava Sobel - review". the Guardian. Retrieved October 7, 2022.
  37. ^ Greenham, David (May 4, 2018). "Theater Review: The Women Who Mapped the Stars — Heroines of the Creative Mind". Retrieved January 6, 2023.

Further reading

edit

Sources

edit
edit