Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Jump to content

Zassenhaus lemma: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m References: edition, publisher
Rm Julius.
Line 1: Line 1:
[[Image:Butterfly lemma.svg|thumb|300px|right|Hasse diagram of the Zassenhaus "butterfly" lemma - smaller subgroups are towards the top of the diagram]]
[[Image:Butterfly lemma.svg|thumb|300px|right|Hasse diagram of the Zassenhaus "butterfly" lemma - smaller subgroups are towards the top of the diagram]]


In [[mathematics]], the '''butterfly lemma''' or '''Zassenhaus lemma''', named after [[Hans Julius Zassenhaus]], is a technical result on the [[lattice of subgroups]] of a [[group (mathematics)|group]] or the [[lattice of submodules]] of a module, or more generally for any [[modular lattice]].<ref>See Pierce, p. 27, exercise 1.</ref>
In [[mathematics]], the '''butterfly lemma''' or '''Zassenhaus lemma''', named after [[Hans Zassenhaus]], is a technical result on the [[lattice of subgroups]] of a [[group (mathematics)|group]] or the [[lattice of submodules]] of a module, or more generally for any [[modular lattice]].<ref>See Pierce, p. 27, exercise 1.</ref>


'''Lemma:''' Suppose <math>(G, \Omega)</math> is a [[group with operators]] and <math>A</math> and <math>C</math> are [[subgroup]]s. Suppose
'''Lemma:''' Suppose <math>(G, \Omega)</math> is a [[group with operators]] and <math>A</math> and <math>C</math> are [[subgroup]]s. Suppose

Revision as of 04:35, 13 December 2012

Hasse diagram of the Zassenhaus "butterfly" lemma - smaller subgroups are towards the top of the diagram

In mathematics, the butterfly lemma or Zassenhaus lemma, named after Hans Zassenhaus, is a technical result on the lattice of subgroups of a group or the lattice of submodules of a module, or more generally for any modular lattice.[1]

Lemma: Suppose is a group with operators and and are subgroups. Suppose

and

are stable subgroups. Then,

is isomorphic to

Zassenhaus proved this lemma specifically to give the smoothest proof of the Schreier refinement theorem. The 'butterfly' becomes apparent when trying to draw the Hasse diagram of the various groups involved.

Notes

  1. ^ See Pierce, p. 27, exercise 1.

References

  • Pierce, R. S. (1982), Associative algebras, Springer, p. 27, ISBN 0-387-90693-2.
  • Goodearl, K. R.; Warfield, Robert B. (1989), An introduction to noncommutative noetherian rings, Cambridge University Press, pp. 51, 62, ISBN 978-0-521-36925-1.
  • Lang, Serge, Algebra, Graduate Texts in Mathematics (Revised 3rd ed.), Springer-Verlag, pp. 20–21, ISBN 978-0-387-95385-4.
  • Carl Clifton Faith, Nguyen Viet Dung, Barbara Osofsky (2009) Rings, Modules and Representations. p. 6. AMS Bookstore, ISBN 0-8218-4370-2
  • Hans Zassenhaus (1934) "Zum Satz von Jordan-Holder-Schrier", Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 10:106–8.
  • Hans Zassenhaus (1958) Theory of Groups, second English edition, Lemma on Four Elements, p 74, Chelsea Publishing.