Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Jump to content

Bismuth selenide

From Wikipedia, the free encyclopedia
Bismuth selenide
Names
IUPAC name
selenoxobismuth, selanylidenebismuth [1]
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.031.901 Edit this at Wikidata
EC Number
  • 235-104-7
UNII
  • InChI=1S/2Bi.3Se
    Key: OMEPJWROJCQMMU-UHFFFAOYSA-N
  • [Se-2].[Se-2].[Se-2].[Bi+3].[Bi+3]
Properties
Bi2Se3
Molar mass 654.8 g/mol [2]
Appearance Dull grey [3]
Density 6.82 g/cm3[2]
Melting point 710 °C (1,310 °F; 983 K)[2]
insoluble
Solubility insoluble in organic solvents
soluble in strong acids [2]
Structure
rhombohedral
Thermochemistry
-140 kJ/mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Toxic [3]
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
0
0
Related compounds
Other anions
Bismuth(III) oxide
Bismuth trisulfide
Bismuth telluride
Other cations
Arsenic triselenide
Antimony triselenide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Bismuth selenide (Bi2Se3) is a gray compound of bismuth and selenium also known as bismuth(III) selenide.

Properties

[edit]

Bismuth selenide is a semiconductor and a thermoelectric material.[4] While stoichiometric bismuth selenide should be a semiconductor with a gap of 0.3 eV, naturally occurring selenium vacancies act as electron donors, so Bi2Se3 is intrinsically n-type.[5][6][7]

Bismuth selenide has a topologically insulating ground-state.[8] Topologically protected Dirac cone surface states have been observed in Bismuth selenide and its insulating derivatives leading to intrinsic topological insulators,[6][9][10][11] which later became the subject of world-wide scientific research.[12][13][14][15]

Bismuth selenide is a van der Waals material consisting of covalently bound five-atom layers (quintuple layers) which are held together by van der Waals interactions[16] and spin-orbit coupling effects.[17] Although the (0001) surface is chemically inert (mostly due to the inert-pair effect of Bi[17]), there are metallic surface states, protected by the non-trivial topology of the bulk. For this reason, the Bi2Se3 surface is an interesting candidate for van der Waals epitaxy and subject of scientific research. For instance, different phases of antimony layers can be grown on Bi2Se3,[18][19] by means of which topological pn-junctions can be realised.[20] More intriguingly, Sb layers undergo topological phase transitions when attached to the Bi2Se3 surface and thus inherit the non-trivial topological properties of the Bi2Se3 substrate.[21][22]

Production

[edit]

Although bismuth selenide occurs naturally (as the mineral guanajuatite) at the Santa Catarina Mine in Guanajuato, Mexico[23] as well as some sites in the United States and Europe,[24] such deposits are rare and contain a significant level of sulfur[24] atoms as an impurity. For this reason, most bismuth selenide used in research into potential commercial applications is synthesized. Commercially-produced samples are available for use in research, but the concentration of selenium vacancies is heavily dependent upon growth conditions,[25][26] and so bismuth selenide used for research is often synthesized in the laboratory.

A stoichiometric mixture of elemental bismuth and selenium, when heated above the melting points of these elements in the absence of air, will become a liquid that freezes to crystalline Bi2Se3.[27] Large single crystals of bismuth selenide can be prepared by the Bridgman–Stockbarger method.[28]

See also

[edit]

References

[edit]
  1. ^ "Bismuth(III) selenide - PubChem Public Chemical Database". Pubchem.ncbi.nlm.nih.gov. 2011-10-21. Retrieved 2011-11-01.
  2. ^ a b c d "bismuth selenide | Bi2Se3". ChemSpider. Retrieved 2011-11-01.
  3. ^ a b "Bismuth Selenide | Bismuth Selenide". Espimetals.com. Archived from the original on 2011-09-08. Retrieved 2011-11-01.
  4. ^ Mishra, S K; S Satpathy; O Jepsen (1997-01-13). "Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide". Journal of Physics: Condensed Matter. 9 (2): 461–470. Bibcode:1997JPCM....9..461M. doi:10.1088/0953-8984/9/2/014. hdl:10355/9466. ISSN 0953-8984. S2CID 250922249.
  5. ^ Analytis, James G.; Chu, Jiun-Haw; Chen, Yulin; Corredor, Felipe; McDonald, Ross D.; Shen, Z. X.; Fisher, Ian R. (2010-05-05). "Bulk Fermi surface coexistence with Dirac surface state in Bi 2 Se 3 : A comparison of photoemission and Shubnikov–de Haas measurements". Physical Review B. 81 (20): 205407. arXiv:1001.4050. Bibcode:2010PhRvB..81t5407A. doi:10.1103/PhysRevB.81.205407. ISSN 1098-0121. S2CID 118322170.
  6. ^ a b Xia, Y; Qian, D; Hsieh, D; Wray, L; Pal, A; Lin, H; Bansil, A; Grauer, D; Hor, Y. S; Cava, R. J; Hasan, M. Z (2009). "Observation of a large-gap topological-insulator class with a single Dirac cone on the surface". Nature Physics. 5 (6): 398–402. arXiv:0908.3513. Bibcode:2009NatPh...5..398X. doi:10.1038/nphys1274.
  7. ^ Hor, Y. S.; A. Richardella; P. Roushan; Y. Xia; J. G. Checkelsky; A. Yazdani; M. Z. Hasan; N. P. Ong; R. J. Cava (2009-05-21). "p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications". Physical Review B. 79 (19): 195208. arXiv:0903.4406. Bibcode:2009PhRvB..79s5208H. doi:10.1103/PhysRevB.79.195208. S2CID 119217126.
  8. ^ Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J.; Hasan, M. Zahid (2009). "Discovery (theoretical prediction and experimental observation) of a large-gap topological-insulator class with spin-polarized single-Dirac-cone on the surface". Nature Physics. arXiv:0908.3513. doi:10.1038/nphys1274. ISSN 1745-2473. S2CID 119195663.
  9. ^ Hsieh, D.; Y. Xia; D. Qian; L. Wray; J. H. Dil; F. Meier; J. Osterwalder; L. Patthey; J. G. Checkelsky; N. P. Ong; A. V. Fedorov; H. Lin; A. Bansil; D. Grauer; Y. S. Hor; R. J. Cava; M. Z. Hasan (2009). "A tunable topological insulator in the spin helical Dirac transport regime". Nature. 460 (7259): 1101–1105. arXiv:1001.1590. Bibcode:2009Natur.460.1101H. doi:10.1038/nature08234. ISSN 0028-0836. PMID 19620959. S2CID 4369601.
  10. ^ Hasan, M. Zahid; Moore, Joel E. (2011-02-08). "Three-Dimensional Topological Insulators". Annual Review of Condensed Matter Physics. 2 (1): 55–78. arXiv:1011.5462. Bibcode:2011ARCMP...2...55H. doi:10.1146/annurev-conmatphys-062910-140432. ISSN 1947-5454. S2CID 11516573.
  11. ^ Xu, Yang; Miotkowski, Ireneusz; Liu, Chang; Tian, Jifa; Nam, Hyoungdo; Alidoust, Nasser; Hu, Jiuning; Shih, Chih-Kang; Hasan, M. Zahid; Chen, Yong P. (2014). "Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator". Nature Physics. 10 (12): 956–963. arXiv:1409.3778. Bibcode:2014NatPh..10..956X. doi:10.1038/nphys3140. ISSN 1745-2481. S2CID 51843826.
  12. ^ Hasan, M. Z.; Kane, C. L. (2010-11-08). "Colloquium: Topological insulators". Reviews of Modern Physics. 82 (4): 3045–3067. arXiv:1002.3895. Bibcode:2010RvMP...82.3045H. doi:10.1103/RevModPhys.82.3045. S2CID 16066223.
  13. ^ "The Strange Topology That Is Reshaping Physics". Scientific American. Retrieved 2020-04-22.
  14. ^ "Welcome to the Weird Mathematical World of Topology". Discover Magazine. Retrieved 2020-04-22.
  15. ^ Ornes, Stephen (2016-09-13). "Topological insulators promise computing advances, insights into matter itself". Proceedings of the National Academy of Sciences. 113 (37): 10223–10224. doi:10.1073/pnas.1611504113. ISSN 0027-8424. PMC 5027448. PMID 27625422.
  16. ^ Luo, Xin; Sullivan, Michael B.; Quek, Su Ying (2012-11-27). "First-principles investigations of the atomic, electronic, and thermoelectric properties of equilibrium and strained Bi 2 Se 3 and Bi 2 Te 3 including van der Waals interactions". Physical Review B. 86 (18): 184111. arXiv:1308.1523. Bibcode:2012PhRvB..86r4111L. doi:10.1103/PhysRevB.86.184111. ISSN 1098-0121. S2CID 118022274.
  17. ^ a b Holtgrewe, Kris (2022). Theoretical modelling of nano-scaled systems with heavy ions. Universitätsbibliothek Gießen (Thesis). doi:10.22029/jlupub-7899.
  18. ^ Flammini, R; Colonna, S; Hogan, C; Mahatha, S K; Papagno, M; Barla, A; Sheverdyaeva, P M; Moras, P; Aliev, Z S; Babanly, M B; Chulkov, E V; Carbone, C; Ronci, F (2018-02-09). "Evidence of β -antimonene at the Sb/Bi 2 Se 3 interface". Nanotechnology. 29 (6): 065704. Bibcode:2018Nanot..29f5704F. doi:10.1088/1361-6528/aaa2c4. ISSN 0957-4484. PMID 29320369.
  19. ^ Hogan, Conor; Holtgrewe, Kris; Ronci, Fabio; Colonna, Stefano; Sanna, Simone; Moras, Paolo; Sheverdyaeva, Polina M.; Mahatha, Sanjoy; Papagno, Marco; Aliev, Ziya S.; Babanly, Mahammad; Chulkov, Evgeni V.; Carbone, Carlo; Flammini, Roberto (2019-09-24). "Temperature Driven Phase Transition at the Antimonene/Bi 2 Se 3 van der Waals Heterostructure". ACS Nano. 13 (9): 10481–10489. arXiv:1906.01901. doi:10.1021/acsnano.9b04377. ISSN 1936-0851. PMID 31469534. S2CID 174799137.
  20. ^ Jin, Kyung-Hwan; Yeom, Han Woong; Jhi, Seung-Hoon (2016-02-19). "Band structure engineering of topological insulator heterojunctions". Physical Review B. 93 (7): 075308. Bibcode:2016PhRvB..93g5308J. doi:10.1103/PhysRevB.93.075308. ISSN 2469-9950.
  21. ^ Holtgrewe, K.; Mahatha, S. K.; Sheverdyaeva, P. M.; Moras, P.; Flammini, R.; Colonna, S.; Ronci, F.; Papagno, M.; Barla, A.; Petaccia, L.; Aliev, Z. S.; Babanly, M. B.; Chulkov, E. V.; Sanna, S.; Hogan, C. (2020-09-03). "Topologization of β-antimonene on Bi2Se3 via proximity effects". Scientific Reports. 10 (1): 14619. Bibcode:2020NatSR..1014619H. doi:10.1038/s41598-020-71624-4. ISSN 2045-2322. PMC 7471962. PMID 32884112.
  22. ^ Holtgrewe, Kris; Hogan, Conor; Sanna, Simone (2021-04-02). "Evolution of Topological Surface States Following Sb Layer Adsorption on Bi2Se3". Materials. 14 (7): 1763. Bibcode:2021Mate...14.1763H. doi:10.3390/ma14071763. ISSN 1996-1944. PMC 8061775. PMID 33918428.
  23. ^ "Santa Catarina Mine, Rancho Calvillo, Santa Rosa, Sierra de Santa Rosa, Guanajuato Municipality, Guanajuato, Mexico". mindat.org. Retrieved April 3, 2022.
  24. ^ a b Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C. "Guanajuatite" (PDF). Handbook of Mineralogy. Mineralogical Society of America. Retrieved April 3, 2022.
  25. ^ Nisson, D. M.; Dioguardi, A. P.; Klavins, P.; Lin, C. H.; Shirer, K.; Shockley, A. C.; Crocker, J.; Curro, N. J. (2013-05-13). "Nuclear magnetic resonance as a probe of electronic states of Bi 2 Se 3". Physical Review B. 87 (19): 195202. arXiv:1304.6768. Bibcode:2013PhRvB..87s5202N. doi:10.1103/PhysRevB.87.195202. ISSN 1098-0121. S2CID 118621215.
  26. ^ Butch, N. P.; Kirshenbaum, K.; Syers, P.; Sushkov, A. B.; Jenkins, G. S.; Drew, H. D.; Paglione, J. (2010-06-01). "Strong surface scattering in ultrahigh-mobility Bi 2 Se 3 topological insulator crystals". Physical Review B. 81 (24): 241301. arXiv:1003.2382. Bibcode:2010PhRvB..81x1301B. doi:10.1103/PhysRevB.81.241301. ISSN 1098-0121. S2CID 55078840.
  27. ^ Chen, Yang; Liu, Yajun; Chu, Maoyou; Wang, Lijun (2014-12-25). "Phase diagrams and thermodynamic descriptions for the Bi–Se and Zn–Se binary systems". Journal of Alloys and Compounds. 617: 423–428. doi:10.1016/j.jallcom.2014.08.001. ISSN 0925-8388.
  28. ^ Atuchin, V. V.; Golyashov, V. A.; Kokh, K. A.; Korolkov, I. V.; Kozhukhov, A. S.; Kruchinin, V. N.; Makarenko, S. V.; Pokrovsky, L. D.; Prosvirin, I. P.; Romanyuk, K. N.; Tereshchenko, O. E. (2011-12-07). "Formation of Inert Bi2Se3(0001) Cleaved Surface". Crystal Growth & Design. 11 (12): 5507–5514. doi:10.1021/cg201163v. ISSN 1528-7483.