Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Jump to content

User:Lynnbwilsoniii

From Wikipedia, the free encyclopedia
Lynn B. Wilson III
Born(1982-10-01)October 1, 1982
Minnesota, United States
Alma mater
Occupation
Employer
Known for
Awards
Doctoral advisorC.A. Cattell
FieldsSpace Plasma Physics, Plasma Physics, Heliophysics, Kinetic theory of gases, Cosmic dust
Software Pagehttps://github.com/lynnbwilsoniii/wind_3dp_pros/wiki
Websitehttps://science.gsfc.nasa.gov/sed/bio/lynn.b.wilson

Refereed Publications

[edit]

[2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [1] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117]

  1. ^ a b Wilson III, L.B.; et al. (May 2021). "A Quarter Century of Wind Spacecraft Discoveries". Rev. Geophys. 59: e2020RG000714. Bibcode:2021RvGeo..59..714W. doi:10.1029/2020RG000714.
  2. ^ Wilson III, L.B.; et al. (July 2007). "Waves in Interplanetary Shocks: A Wind/WAVES Study". Phys. Rev. Lett. 99: 041101. Bibcode:2007PhRvL..99d1101W. doi:10.1103/PhysRevLett.99.041101.
  3. ^ Wilson III, L.B.; et al. (October 2009). "Low-frequency whistler waves and shocklets observed at quasi-perpendicular interplanetary shocks". J. Geophys. Res. 114: 10106. Bibcode:2009JGRA..11410106W. doi:10.1029/2009JA014376.
  4. ^ Breneman, A.W.; et al. (August 2010). "Observations of Large Amplitude, Narrowband Whistlers at Stream Interaction Regions". J. Geophys. Res. 115: 8104. Bibcode:2010JGRA..11508104B. doi:10.1029/2009JA014920.
  5. ^ Kellogg, P.J.; et al. (October 2010). "Electron trapping and charge transport by large amplitude whistlers". Geophys. Res. Lett. 37: 20106. Bibcode:2010GeoRL..3720106K. doi:10.1029/2010GL044845.
  6. ^ Wilson III, L.B. (September 2010). The microphysics of collisionless shocks. ProQuest Dissertations And Theses. Bibcode:2010PhDT........43W. ISBN 9781124274577.
  7. ^ Wilson III, L.B.; et al. (December 2010). "Large-amplitude electrostatic waves observed at a supercritical interplanetary shock". J. Geophys. Res. 115: 12104. Bibcode:2010JGRA..11512104W. doi:10.1029/2010JA015332.
  8. ^ Breneman, A.W.; et al. (June 2011). "Large Amplitude Transmitter- and Lightning-Associated Whistler Waves in the Earth's Inner Plasmasphere at L < 2". J. Geophys. Res. 116: A06310. Bibcode:2011JGRA..116.6310B. doi:10.1029/2010JA016288.
  9. ^ Cattell, C.A.; et al. (July 2011). "Observations of a high-latitude stable electron auroral emission at ~16 MLT during a large substorm". J. Geophys. Res. 116: A07215. Bibcode:2011JGRA..11607215C. doi:10.1029/2010JA016132.
  10. ^ Kellogg, P.J.; et al. (September 2011). "Large Amplitude Whistlers in the Magnetosphere Observed with Wind-WAVES". J. Geophys. Res. 116: A09224. Bibcode:2011JGRA..11609224K. doi:10.1029/2010JA015919.
  11. ^ Kersten, K.; et al. (April 2011). "Observation of relativistic electron microbursts in conjunction with intense radiation belt whistler-mode waves". Geophys. Res. Lett. 38: 8107. Bibcode:2011GeoRL..3808107K. doi:10.1029/2011GL046810.
  12. ^ Wilson III, L.B.; et al. (September 2011). "The properties of large amplitude whistler mode waves in the magnetosphere: propagation and relationship with geomagnetic activity". Geophys. Res. Lett. 38: 17107. Bibcode:2011GeoRL..3817107W. doi:10.1029/2011GL048671.
  13. ^ Breneman, A.W.; et al. (April 2012). "Explaining Polarization Reversals in STEREO Wave Data". J. Geophys. Res. 117: A04317. Bibcode:2012JGRA..11704317B. doi:10.1029/2011JA017425.
  14. ^ Wilson III, L.B.; et al. (April 2012). "Observations of Electromagnetic Whistler Precursors at Supercritical Interplanetary Shocks". Geophys. Res. Lett. 39: L08109. Bibcode:2012GeoRL..3908109W. doi:10.1029/2012GL051581.
  15. ^ Collinson, G.A.; et al. (October 2012). "Short Large-Amplitude Magnetic Structures (SLAMS) at Venus". J. Geophys. Res. 117: 10221. Bibcode:2012JGRA..11710221C. doi:10.1029/2012JA017838.
  16. ^ Cattell, C.A.; et al. (December 2012). "Large-Amplitude Whistler Waves and Electron Acceleration in the Earth's Radiation Belts: A Review of STEREO and Wind Observations". Geophys. Monogr. Ser. 199: 41–51. Bibcode:2012GMS...199...41C. doi:10.1029/2012GM001322.
  17. ^ Wilson III, L.B.; et al. (January 2013). "Electromagnetic waves and electron anisotropies downstream of supercritical interplanetary shocks". J. Geophys. Res. 118: 5–16. Bibcode:2013JGRA..118....5W. doi:10.1029/2012JA018167.
  18. ^ Malaspina, D.M.; et al. (February 2013). "Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets". J. Geophys. Res. 118: 591–599. Bibcode:2013JGRA..118..591M. doi:10.1002/jgra.50102.
  19. ^ Wilson III, L.B.; et al. (March 2013). "Shocklets, SLAMS, and field-aligned ion beams in the terrestrial foreshock". J. Geophys. Res. 118: 957–966. Bibcode:2013JGRA..118..957W. doi:10.1029/2012JA018186.
  20. ^ Tang, X.; et al. (July 2013). "THEMIS observations of the magnetopause electron diffusion region: Large amplitude waves and heated electrons". Geophys. Res. Lett. 40: 2884–2890. Bibcode:2013GeoRL..40.2884T. doi:10.1002/grl.50565.
  21. ^ Breneman, A.W.; et al. (December 2013). "STEREO and Wind observations of intense cyclotron harmonic waves at the Earths bow shock and inside the magnetosheath". J. Geophys. Res. 118: 7654–7664. Bibcode:2013JGRA..118.7654B. doi:10.1002/2013JA019372.
  22. ^ Malaspina, D.M.; et al. (March 2014). "Interplanetary and interstellar dust observed by the Wind/WAVES electric field instrument". Geophys. Res. Lett. 41: 266–272. Bibcode:2014GeoRL..41..266M. doi:10.1002/2013GL058786.
  23. ^ Yu, W.; et al. (March 2014). "A Statistical Analysis of Properties of Small Transients in the Solar Wind 2007-2009: STEREO and Wind Observations". J. Geophys. Res. 119: 689–708. Bibcode:2014JGRA..119..689Y. doi:10.1002/2013JA019115.
  24. ^ Farrugia, C.J.; et al. (July 2014). "A Vortical Boundary Layer for Near-Radial IMF: Wind Observations on October 24, 2001". J. Geophys. Res. 119: 4572–4590. Bibcode:2014JGRA..119.4572F. doi:10.1002/2013JA019578.
  25. ^ Wilson III, L.B.; et al. (September 2014). "Quantified Energy Dissipation Rates in the Terrestrial Bow Shock: 1. Analysis Techniques and Methodology". J. Geophys. Res. 119: 6455–6474. Bibcode:2014JGRA..119.6455W. doi:10.1002/2014JA019929.
  26. ^ Wilson III, L.B.; et al. (September 2014). "Quantified Energy Dissipation Rates in the Terrestrial Bow Shock: 2. Waves and Dissipation". J. Geophys. Res. 119: 6475–6495. Bibcode:2014JGRA..119.6475W. doi:10.1002/2014JA019930.
  27. ^ Muzamil, F.M.; et al. (October 2014). "Structure of a reconnection layer poleward of the cusp: Extreme density asymmetry and a guide field". J. Geophys. Res. 119: 7343–7362. Bibcode:2014JGRA..119.7343M. doi:10.1002/2014JA019879.
  28. ^ Tang, X.; et al. (May 2015). "THEMIS observations of electrostatic ion cyclotron waves and associated ion heating near the Earth's dayside magnetopause". J. Geophys. Res. 120: 3380–3392. Bibcode:2015JGRA..120.3380T. doi:10.1002/2015JA020984.
  29. ^ Kempf, Y.; et al. (May 2015). "Ion distributions in the Earth's foreshock: Hybrid-Vlasov simulation and THEMIS observations". J. Geophys. Res. 120: 3684–3701. Bibcode:2015JGRA..120.3684K. doi:10.1002/2014JA020519.
  30. ^ Osmane, A.; et al. (Jan 2016). "On the Connection between Microbursts and Nonlinear Electronic Structures in Planetary Radiation Belts". Astrophys. J. 816: 51–60. Bibcode:2016ApJ...816...51O. doi:10.3847/0004-637X/816/2/51.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  31. ^ Wilson III, L.B.; et al. (February 2016). "Low frequency waves at and upstream of collisionless shocks". Geophys. Monogr. Ser. 216: 269–291. Bibcode:2016GMS...216..269W. doi:10.1002/9781119055006.ch16.
  32. ^ Wicks, R.T.; et al. (March 2016). "A Proton-cyclotron Wave Storm Generated by Unstable Proton Distribution Functions in the Solar Wind". Astrophys. J. 819: 6. Bibcode:2016ApJ...819....6W. doi:10.3847/0004-637X/819/1/6.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  33. ^ Kanekal, S.G.; et al. (August 2016). "Prompt acceleration of magnetospheric electrons to ultrarelativistic energies by the 17 March 2015 interplanetary shock". J. Geophys. Res. 121: 7622–7635. Bibcode:2016JGRA..121.7622K. doi:10.1002/2016JA022596.
  34. ^ Wilson III, L.B.; et al. (November 2016). "Relativistic electrons produced by foreshock disturbances observed upstream of the Earth's bow shock". Phys. Rev. Lett. 117: 215101. Bibcode:2016PhRvL.117u5101W. doi:10.1103/PhysRevLett.117.215101.
  35. ^ Malaspina, D.M.; et al. (November 2016). "A database of interplanetary and interstellar dust detected by the Wind spacecraft". J. Geophys. Res. 121: 9369–9377. Bibcode:2016JGRA..121.9369M. doi:10.1002/2016JA023209.
  36. ^ Oka, M.; et al. (June 2017). "Electron scattering by high-frequency whistler waves at Earth's bow shock". Astrophys. J. Lett. 842: 7. Bibcode:2017ApJ...842L..11O. doi:10.3847/2041-8213/aa7759.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  37. ^ Wang, S.; et al. (June 2017). "Parallel electron heating in the magnetospheric inflow region". Geophys. Res. Lett. 44: 4384–4392. Bibcode:2017GeoRL..44.4384W. doi:10.1002/2017GL073404.
  38. ^ Liu, T.Z.; et al. (August 2017). "Statistical study of particle acceleration in the core of foreshock transients". J. Geophys. Res. 122: 7197–7208. Bibcode:2017JGRA..122.7197L. doi:10.1002/2017JA024043.
  39. ^ Liu, T.Z.; et al. (October 2017). "Fermi acceleration of electrons inside foreshock transient cores". J. Geophys. Res. 122: 9248–9263. Bibcode:2017JGRA..122.9248L. doi:10.1002/2017JA024480.
  40. ^ Osmane, A.; et al. (August 2017). "Subcritical Growth of Electron Phase-space Holes in Planetary Radiation Belts". Astrophys. J. 846: 8. Bibcode:2017ApJ...846....8O. doi:10.3847/1538-4357/aa8367.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  41. ^ Wilson III, L.B.; et al. (October 2017). "Revisiting the structure of low Mach number, low beta, quasi-perpendicular shocks". J. Geophys. Res. 122: 9115–9133. Bibcode:2017JGRA..122.9115W. doi:10.1002/2017JA024352.
  42. ^ Horaites, K.; et al. (February 2018). "Kinetic Theory and Fast Wind Observations of the Electron Strahl". Mon. Not. Roy. Astron. Soc. 474: 115–127. Bibcode:2018MNRAS.474..115H. doi:10.1093/mnras/stx2555.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  43. ^ Livadiotis, G.; et al. (February 2018). "Generation of Kappa Distributions in Solar Wind at 1 au". Astrophys. J. 853: 15. Bibcode:2018ApJ...853..142L. doi:10.3847/1538-4357/aaa713.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  44. ^ Liu, Y.M.; et al. (May 2018). "Kinetic Properties of an Interplanetary Shock Propagating inside a Coronal Mass Ejection". Astrophys. J. Lett. 859: L4. Bibcode:2018ApJ...859L...4L. doi:10.3847/2041-8213/aac269.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  45. ^ Chen, L.-J.; et al. (June 2018). "Electron bulk acceleration and thermalization at Earth's quasi-perpendicular bow shock". Phys. Rev. Lett. 120: 225101. Bibcode:2018PhRvL.120v5101C. doi:10.1103/PhysRevLett.120.225101.
  46. ^ Wilson III, L.B.; et al. (June 2018). "The Statistical Properties of Solar Wind Temperature Parameters Near 1 au". Astrophys. J. Suppl. 236: 41. Bibcode:2018ApJS..236...41W. doi:10.3847/1538-4365/aab71c.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  47. ^ Giagkiozis, S.; et al. (July 2018). "Statistical study of the properties of magnetosheath lion roars". J. Geophys. Res. 123: 5435–5451. Bibcode:2018JGRA..123.5435G. doi:10.1029/2018JA025343.
  48. ^ Turner, D.L.; et al. (September 2018). "Autogenous and efficient acceleration of energetic ions upstream of Earth's bow shock". Nature. 561: 206–210. Bibcode:2018Natur.561..206T. doi:10.1038/s41586-018-0472-9.
  49. ^ Collinson, G.A.; et al. (September 2018). "Solar Wind Induced Waves in the Skies of Mars: Ionospheric Compression, Energization, and Escape Resulting From the Impact of Ultralow Frequency Magnetosonic Waves Generated Upstream of the Martian Bow Shock". J. Geophys. Res. 123: 7241–7256. Bibcode:2018JGRA..123.7241C. doi:10.1029/2018JA025414.
  50. ^ Lario, D.; et al. (October 2018). "Flat Proton Spectra in Large Solar Energetic Particle Events". J. Phys. Conf. Ser. 1100: 012014. Bibcode:2018JPhCS1100a2014L. doi:10.1088/1742-6596/1100/1/012014.
  51. ^ Goodrich, K.A.; et al. (November 2018). "MMS Observations of Electrostatic Waves in an Oblique Shock Crossing". J. Geophys. Res. 123: 9430–9442. Bibcode:2018JGRA..123.9430G. doi:10.1029/2018JA025830.
  52. ^ Wang, S.; et al. (January 2019). "Observational evidence of magnetic reconnection in the terrestrial bow shock transition region". Geophys. Res. Lett. 46: 562–570. Bibcode:2019GeoRL..46..562W. doi:10.1029/2018GL080944.
  53. ^ Goodrich, K.A.; et al. (March 2019). "Impulsively Reflected Ions: A Plausibile Mechanism for Ion Acoustic Wave Growth in Collisionless Shocks". J. Geophys. Res. 124: 1855–1865. Bibcode:2019JGRA..124.1855G. doi:10.1029/2018JA026436.
  54. ^ Ofman, L.; et al. (April 2019). "Understanding the Role of α Particles in Oblique Heliospheric Shock Oscillations". J. Geophys. Res. 124: 2393–2405. Bibcode:2019JGRA..124.2393O. doi:10.1029/2018JA026301.
  55. ^ Lario, D.; et al. (June 2019). "Evolution of the Suprathermal Proton Population at Interplanetary Shocks". Astron. J. 158: 12. Bibcode:2019AJ....158...12L. doi:10.3847/1538-3881/ab1e49.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  56. ^ Wilson III, L.B.; et al. (July 2019). "Electron energy partition across interplanetary shocks: I. Methodology and Data Product". Astrophys. J. Suppl. 243: 26. Bibcode:2019ApJS..243....8W. doi:10.3847/1538-4365/ab22bd.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  57. ^ Wilson III, L.B.; et al. (May 2019). "Supplement to: Electron energy partition across interplanetary shocks". Zenodo. 1.0: 00. Bibcode:2019zndo...2875806W. doi:10.5281/zenodo.2875806.
  58. ^ Bessho, N.; et al. (August 2019). "Magnetic reconnection in a quasi-parallel shock: two-dimensional local particle-in-cell simulation". Geophys. Res. Lett. 46: 9352–9361. Bibcode:2019GeoRL..46.9352B. doi:10.1029/2019GL083397.
  59. ^ Oka, M.; et al. (November 2019). "Electron Scattering by Low-Frequency Whistler Waves at Earth's Bow Shock". Astrophys. J. 886: 11. Bibcode:2019ApJ...886...53O. doi:10.3847/1538-4357/ab4a81.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  60. ^ Wilson III, L.B.; et al. (December 2019). "Electron energy partition across interplanetary shocks: II. Statistics". Astrophys. J. Suppl. 245: 29. Bibcode:2019ApJS..245...24W. doi:10.3847/1538-4365/ab5445.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  61. ^ Heuer, P.V.; et al. (February 2020). "Laboratory Observations of Ultra-Low Frequency Analogue Waves Driven by the Right-Hand Resonant Ion Beam Instability". Astrophys. J. Lett. 891: 6. Bibcode:2020ApJ...891L..11H. doi:10.3847/2041-8213/ab75f4.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  62. ^ Wilson III, L.B.; et al. (April 2020). "Electron energy partition across interplanetary shocks: III. Analysis". Astrophys. J. 893: 21. Bibcode:2020ApJ...893...22W. doi:10.3847/1538-4357/ab7d39.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  63. ^ Madanian, H.; et al. (May 2020). "Nonstationary Quasi-perpendicular Shock and Ion Reflection at Mars". Geophys. Res. Lett. 47: e2020GL088309. Bibcode:2020GeoRL..4788309M. doi:10.1029/2020GL088309.
  64. ^ Farrugia, C.J.; et al. (June 2020). "A Study of a Magnetic Cloud Propagating Through Large-Amplitude Alfven Waves". J. Geophys. Res. 125: e2019JA027638. Bibcode:2020JGRA..12527638F. doi:10.1029/2019JA027638.
  65. ^ Turner, D.L.; et al. (July 2020). "Microscopic, Multipoint Characterization of Foreshock Bubbles With Magnetospheric Multiscale (MMS)". J. Geophys. Res. 125: e2019JA027707. Bibcode:2020JGRA..12527707T. doi:10.1029/2019JA027707.
  66. ^ Chen, L.-J.; et al. (July 2020). "Lower-Hybrid Drift Waves Driving Electron Nongyrotropic Heating and Vortical Flows in a Magnetic Reconnection Layer". Phys. Rev. Lett. 125: 025103. Bibcode:2020PhRvL.125b5103C. doi:10.1103/PhysRevLett.125.025103.
  67. ^ Wang, S.; et al. (August 2020). "Ion-scale Current Structures in Short Large-amplitude Magnetic Structures". Astrophys. J. 898: 13. Bibcode:2020ApJ...898..121W. doi:10.3847/1538-4357/ab9b8b.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  68. ^ Bessho, N.; et al. (September 2020). "Magnetic reconnection and kinetic waves generated in the Earth's quasi-parallel bow shock". Phys. Plasmas. 27: 092901. Bibcode:2020PhPl...27i2901B. doi:10.1063/5.0012443.
  69. ^ Cohen, Z.A.; et al. (December 2020). "The Rapid Variability of Wave Electric Fields Within and Near Quasiperpendicular Interplanetary Shock Ramps: STEREO Observations". Astrophys. J. 904: 14. Bibcode:2020ApJ...904..174C. doi:10.3847/1538-4357/abbeec.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  70. ^ Liu, T.Z.; et al. (January 2021). "Magnetospheric Multiscale observations of Earth's oblique bow shock reformation by foreshock ultra-low frequency waves". Geophys. Res. Lett. 48: e2020GL091184. Bibcode:2021GeoRL..4891184L. doi:10.1029/2020GL091184.
  71. ^ Wilson III, L.B.; et al. (January 2021). "The discrepancy between simulation and observation of electric fields in collisionless shocks". Front. Astron. Space Sci. 7: 14. Bibcode:2021FrASS...7...97W. doi:10.3389/fspas.2020.592634.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  72. ^ Madanian, H.; et al. (February 2021). "The Dynamics of a High Mach Number Quasi-Perpendicular Shock: MMS Observations". Astrophys. J. 908: 11. Bibcode:2021ApJ...908...40M. doi:10.3847/1538-4357/abcb88.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  73. ^ Farrugia, C.J.; et al. (March 2021). "An Encounter with the Ion and Electron Diffusion Regions at a Flapping and Twisted Tail Current Sheet". J. Geophys. Res. 126: e2020JA028903. Bibcode:2021JGRA..12628903F. doi:10.1029/2020JA028903.
  74. ^ Turner, D.L.; et al. (April 2021). "Direct Multipoint Observations Capturing the Formation of a Supercritical Fast Magnetosonic Shock". Astrophys. J. Lett. 911: 11. Bibcode:2021ApJ...911L..31T. doi:10.3847/2041-8213/abec78.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  75. ^ Collinson, G.A.; et al. (May 2021). "Depleted plasma densities in the ionosphere of Venus near solar minimum from Parker Solar Probe observations of upper hybrid resonance emission". Geophys. Res. Lett. 48: e2020GL092243. Bibcode:2021GRL...48.92243C. doi:10.1029/2020GL092243.
  76. ^ Ofman, L.; et al. (May 2021). "Oblique High Mach Number Heliospheric Shocks: the Role of Alpha Particles". J. Geophys. Res. 126: e2020JA028962. Bibcode:2021JGRA..12628962O. doi:10.1029/2020JA028962.
  77. ^ Blum, L.W.; et al. (June 2021). "Prompt Response of the Dayside Magnetosphere to Discrete Structures Within the Sheath Region of a Coronal Mass Ejection". Geophys. Res. Lett. 48: e2021GL092700. Bibcode:2021GeoRL..4892700B. doi:10.1029/2021GL092700.
  78. ^ Davis, L.A.; et al. (June 2021). "ARTEMIS Observations of Plasma Waves in Laminar and Perturbed Interplanetary Shocks". Astrophys. J. 913: 18. Bibcode:2021ApJ...913..144D. doi:10.3847/1538-4357/abf56a.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  79. ^ Starkey, M.J.; et al. (June 2021). "MMS Observations of Energized He+ Pickup Ions at Quasiperpendicular Shocks". Astrophys. J. 913: 13. Bibcode:2021ApJ...913..112S. doi:10.3847/1538-4357/abf4d9.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  80. ^ Malaspina, D.M.; et al. (June 2021). "Electron Bernstein waves and narrowband plasma waves near the electron cyclotron frequency in the near-Sun solar wind". Astron. & Astrophys. 650: 10. Bibcode:2021A&A...650A..97M. doi:10.1051/0004-6361/202140449.
  81. ^ Juno, J.; et al. (June 2021). "A field-particle correlation analysis of a perpendicular magnetized collisionless shock". J. Plasma Phys. 87: 905870316. Bibcode:2021JPlPh..87c9016J. doi:10.1017/S0022377821000623.
  82. ^ Schwartz, S.J.; et al. (June 2021). "Evaluating the deHoffmann-Teller Cross-Shock Potential at Real Collisionless Shocks". J. Geophys. Res. 126: e2021JA029295. Bibcode:2021JGRA..12629295S. doi:10.1029/2021JA029295.
  83. ^ Lario, D.; et al. (October 2021). "Comparative Analysis of the 2020 November 29 Solar Energetic Particle Event Observed by Parker Solar Probe". Astrophys. J. 920: 16. Bibcode:2021ApJ...920..123L. doi:10.3847/1538-4357/ac157f.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  84. ^ Collinson, G.A.; et al. (January 2022). "A Revised Understanding of the Structure of the Venusian Magnetotail From a High-Altitude Intercept With a Tail Ray by Parker Solar Probe". Geophys. Res. Lett. 49: e2021GL096485. Bibcode:2022GeoRL..4996485C. doi:10.1029/2021GL096485.
  85. ^ Lario, D.; et al. (February 2022). "The Extended Field-aligned Suprathermal Proton Beam and Long-lasting Trapped Energetic Particle Population Observed Upstream of a Transient Interplanetary Shock". Astrophys. J. 925: 16. Bibcode:2022ApJ...925..198L. doi:10.3847/1538-4357/ac3c47.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  86. ^ Bessho, N.; et al. (April 2022). "Strong reconnection electric fields in shock-driven turbulence". Phys. Plasmas. 29: 042304. Bibcode:2022PhPl...29d2304B. doi:10.1063/5.0077529.
  87. ^ Kooi, J.E.; et al. (April 2022). "Modern Faraday Rotation Studies to Probe the Solar Wind". Front. Astron. Space Sci. 9: 26. Bibcode:2022FrASS...941866K. doi:10.3389/fspas.2022.841866.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  88. ^ Nieves-Chinchilla, T.; et al. (May 2022). "Direct First PSP Observation of the Interaction of Two Successive Interplanetary Coronal Mass Ejections in November 2020". Astrophys. J. 930: 21. Bibcode:2022ApJ...930...88N. doi:10.3847/1538-4357/ac590b.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  89. ^ Winske, D.; et al. (May 2022). "Linear Theory of Electromagnetic Ion Beam Instabilities in the Earth's Foreshock: Peter Gary's Contributions (1981--1991)". Front. Astron. Space Sci. 9: 26. Bibcode:2022FrASS...9.9642W. doi:10.3389/fspas.2022.899642.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  90. ^ Howes, G.G.; et al. (June 2022). "Revolutionizing our Understanding of Particle Energization in Space Plasmas Using On-Board Wave-Particle Correlator Instrumentation". Front. Astron. Space Sci. 9: 912868. Bibcode:2022FrASS...9.2868H. doi:10.3389/fspas.2022.912868.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  91. ^ Eriksson, S.; et al. (July 2022). "Characteristics of Multi-Scale Current Sheets in the Solar Wind at 1 AU Associated with Magnetic Reconnection and the Case for a Heliospheric Current Sheet Avalanche". Astrophys. J. 933: 21. Bibcode:2022ApJ...933..181E. doi:10.3847/1538-4357/ac73f6.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  92. ^ Farrugia, C.J.; et al. (August 2022). "Effects from Dayside Magnetosphere to Distant Tail Unleashed by a Bifurcated, Non-Reconnecting Interplanetary Current Sheet". Front. Astron. Space Sci. 9: 942486. Bibcode:2022FrP....10.2486F. doi:10.3389/fphy.2022.942486.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  93. ^ Schwartz, S.J.; et al. (October 2022). "Energy partition at collisionless supercritical quasiperpendicular shocks". J. Geophys. Res. 127: e2022JA030637. Bibcode:2022JGRA..12730637S. doi:10.1029/2022JA030637.
  94. ^ Allen, R.C.; et al. (October 2022). "Interplanetary Mesoscale Observatory (InterMeso): A mission to untangle dynamic mesoscale structures throughout the heliosphere". Front. Astron. Space Sci. 9: 1002273. Bibcode:2022FrASS...902273A. doi:10.3389/fspas.2022.1002273.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  95. ^ Hervig, M.E.; et al. (October 2022). "Decadal and annual variations in meteoric flux from Ulysses, Wind, and SOFIE observations". J. Geophys. Res. 127: e2022JA030749. Bibcode:2022JGRA..12730749H. doi:10.1029/2022JA030749.
  96. ^ Liu, M.; et al. (November 2022). "Properties of A Supercritical Quasi-perpendicular Interplanetary Shock Propagating in the Terrestrial Foreshock Region". Astrophys. J. Suppl. 263: 15. Bibcode:2022ApJS..263...11L. doi:10.3847/1538-4365/ac94c8.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  97. ^ Wilson III, L.B.; et al. (November 2022). "The need for accurate measurements of thermal velocity distribution functions in the solar wind". Front. Astron. Space Sci. 9: 1063841. Bibcode:2022FrASS...963841W. doi:10.3389/fspas.2022.1063841.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  98. ^ Trotta, D.; et al. (January 2023). "Multi-spacecraft observations of shocklets at an interplanetary shock". Mon. Not. Roy. Astron. Soc. 520: 437–445. Bibcode:2023MNRAS.520..437T. doi:10.1093/mnras/stad104.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  99. ^ Juno, J.; et al. (February 2023). "Phase Space Energization of Ions in Oblique Shocks". Astrophys. J. 944: 9. Bibcode:2023ApJ...944...15J. doi:10.3847/1538-4357/acaf53.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  100. ^ Halford, A.J.; et al. (February 2023). "Cultivating a culture of inclusivity in Heliophysics". Front. Phys. Space Physics. 11: 1061683. Bibcode:2023FrP....1161683H. doi:10.3389/fphy.2023.1061683.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  101. ^ Jensen, E.A.; et al. (April 2023). "The Faraday Effect Tracker of Coronal and Heliospheric Structures (FETCH) instrument". Front. Astron. Space Sci. 10: 1064069. Bibcode:2023FrASS..1064069J. doi:10.3389/fspas.2023.1064069.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  102. ^ Fordin, S.; et al. (June 2023). "A Machine Learning-Based Approach to Time-series Wave Identification in the Solar Wind". Astrophys. J. 949: 40. Bibcode:2023ApJ...949...40F. doi:10.3847/1538-4357/acc8d5.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  103. ^ Perri, S.; et al. (June 2023). "Interpretation of Flat Energy Spectra Upstream of Fast Interplanetary Shocks". Astrophys. J. 950: 62. Bibcode:2023ApJ...950...62P. doi:10.3847/1538-4357/acc942.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  104. ^ Johnson, E.; et al. (June 2023). "Anterograde Collisional Analysis of Solar Wind Ions". Astrophys. J. 950: 51. Bibcode:2023ApJ...950...51J. doi:10.3847/1538-4357/accc32.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  105. ^ Akhavan-Tafti, M.; et al. (June 2023). "Space weather investigation Frontier (SWIFT)". Front. Astron. Space Sci. 10: 1185603. Bibcode:2023FrASS..1085603A. doi:10.3389/fspas.2023.1185603.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  106. ^ Horaites, K.; et al. (August 2023). "Correction to: Kinetic theory and fast wind observations of the electron strahl". Mon. Not. Roy. Astron. Soc. 523: 2399–2400. Bibcode:2023MNRAS.523.2399H. doi:10.1093/mnras/stad1443.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  107. ^ Farrugia, C.J.; et al. (August 2023). "How Magnetic Reconnection May Affect the Coherence of Interplanetary Coronal Mass Ejections". Astrophys. J. 953: 15. Bibcode:2023ApJ...953...15F. doi:10.3847/1538-4357/acdcf7.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  108. ^ Halford, A.J.; et al. (August 2023). "The importance of recruitment and retention in Heliophysics: it's not just a pipeline problem". Front. Astron. Space Sci. 10: 1216449. Bibcode:2023FrASS..1016449H. doi:10.3389/fspas.2023.1216449.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  109. ^ Bessho, N.; et al. (September 2023). "Electron Acceleration and Heating during Magnetic Reconnection in the Earth's Quasi-parallel Bow Shock". Astrophys. J. 954: 25. Bibcode:2023ApJ...954...25B. doi:10.3847/1538-4357/ace321.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  110. ^ Collinson, G.A.; et al. (September 2023). "Shocklets and Short Large Amplitude Magnetic Structures (SLAMS) in the High Mach Foreshock of Venus". Geophys. Res. Lett. 50: e2023GL104610. Bibcode:2023GeoRL..5004610C. doi:10.1029/2023GL104610.
  111. ^ Wexler, D.B.; et al. (October 2023). "Investigating a Solar Wind Stream Interaction Region using Interplanetary Spacecraft Radio Signals: A Magnetohydrodynamic Simulation Study". Astrophys. J. 955: 90. Bibcode:2023ApJ...955...90W. doi:10.3847/1538-4357/acedac.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  112. ^ Goodrich, K.A.; et al. (October 2023). "The multi-point assessment of the kinematics of shocks (MAKOS)". Front. Astron. Space Sci. 10: 1199711. Bibcode:2023FrASS..1099711G. doi:10.3389/fspas.2023.1199711.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  113. ^ Voshchepynets, A.; et al. (October 2023). "Multipoint Detection of GRB221009A's Propagation through the Heliosphere". Astrophys. J. Lett. 956: L4. Bibcode:2023ApJ...956L...4V. doi:10.3847/2041-8213/acf933.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  114. ^ Wilson III, L.B.; et al. (December 2019). "Spacecraft Floating Potential Measurements for the Wind Spacecraft". Astrophys. J. Suppl. 269: 52. Bibcode:2023ApJS..269...52W. doi:10.3847/1538-4365/ad0633.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  115. ^ Wilson III, L.B.; et al. (December 2019). "Erratum: ``The Statistical Properties of Solar Wind Temperature Parameters Near 1 au". Astrophys. J. Suppl. 269: 62. Bibcode:2023ApJS..269...62W. doi:10.3847/1538-4365/ad07de.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  116. ^ Gopalswamy, N.; et al. (January 2024). "The multiview observatory for solar terrestrial science (MOST)". J. Atmos. Solar-Terr. Phys. 254: 106165. Bibcode:2024JASTP.25406165G. doi:10.1016/j.jastp.2023.106165.
  117. ^ Carcaboso, F.; et al. (April 2024). "Unveiling the journey of a highly inclined CME. Insights from the March 13, 2012, event with 110o longitudinal separation". Astron. & Astrophys. 684: A90. Bibcode:2024A&A...684A..90C. doi:10.1051/0004-6361/202347083.