Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Jump to content

Sheaf theory

From Wikiquote

In mathematics, a sheaf is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set. (Intuitively, every piece of data is the sum of its parts.)

Quotes

[edit]
  • The purpose of sheaf theory is quite general: it is to obtain global information from local information, or else to define “obstructions” which characterize the fact that a local property does not hold globally any more: for example a manifold is not always orientable, or a differential equation can be locally solvable, but not globally.
[edit]
Wikipedia
Wikipedia
Wikipedia has an article about:



Mathematics
Mathematicians
(by country)

AbelAnaxagorasArchimedesAristarchus of SamosAverroesArnoldBanachCantorCartanChernCohenDescartesDiophantusErdősEuclidEulerFourierGaussGödelGrassmannGrothendieckHamiltonHilbertHypatiaLagrangeLaplaceLeibnizMilnorNewtonvon NeumannNoetherPenrosePerelmanPoincaréPólyaPythagorasRiemannRussellSchwartzSerreTaoTarskiThalesTuringWeilWeylWilesWitten

Numbers

123360eπFibonacci numbersIrrational numberNegative numberNumberPrime numberQuaternionOctonion

Concepts

AbstractionAlgorithmsAxiomatic systemCompletenessDeductive reasoningDifferential equationDimensionEllipseElliptic curveExponential growthInfinityIntegrationGeodesicInductionProofPartial differential equationPrinciple of least actionPrisoner's dilemmaProbabilityRandomnessTheoremTopological spaceWave equation

Results

Euler's identityFermat's Last Theorem

Pure math

Abstract algebraAlgebraAnalysisAlgebraic geometry (Sheaf theory) • Algebraic topologyArithmeticCalculusCategory theoryCombinatoricsCommutative algebraComplex analysisDifferential calculusDifferential geometryDifferential topologyErgodic theoryFoundations of mathematicsFunctional analysisGame theoryGeometryGlobal analysisGraph theoryGroup theoryHarmonic analysisHomological algebraInvariant theoryLogicNon-Euclidean geometryNonstandard analysisNumber theoryNumerical analysisOperations researchRepresentation theoryRing theorySet theorySheaf theoryStatisticsSymplectic geometryTopology

Applied math

Computational fluid dynamicsEconometricsFluid mechanicsMathematical physicsScience

History of math

Ancient Greek mathematicsEuclid's ElementsHistory of algebraHistory of calculusHistory of logarithmsIndian mathematicsPrincipia Mathematica

Other

Mathematics and mysticismMathematics educationMathematics, from the points of view of the Mathematician and of the PhysicistPhilosophy of mathematicsUnification in science and mathematics