Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                



Dates are inconsistent

Dates are inconsistent

482 results sorted by ID

2024/1349 (PDF) Last updated: 2024-08-28
Oblivious Pseudo Random Function base on Ideal Lattice, Application in PSI and PIR
Zhuang Shan, Leyou Zhang, Qing Wu, Qiqi Lai, Fuchun Guo
Cryptographic protocols

Privacy set intersection (PSI) and private information retrieval (PIR) are important areas of research in privacy protection technology. One of the key tools for both is the oblivious pseudorandom function (OPRF). Currently, existing oblivious pseudorandom functions either focus solely on efficiency without considering quantum attacks, or are too complex, resulting in low efficiency. The aim of this paper is to achieve a balance: to ensure that the oblivious pseudorandom function can...

2024/1146 (PDF) Last updated: 2024-07-15
Breaking Free: Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions
Minglang Dong, Yu Chen, Cong Zhang, Yujie Bai
Cryptographic protocols

Multi-party private set union (MPSU) protocol enables $m$ $(m > 2)$ parties, each holding a set, to collectively compute the union of their sets without revealing any additional information to other parties. There are two main categories of MPSU protocols: The first builds on public-key techniques. All existing works in this category involve a super-linear number of public-key operations, resulting in poor practical efficiency. The second builds on oblivious transfer and symmetric-key...

2024/1143 (PDF) Last updated: 2024-07-13
LR-OT: Leakage-Resilient Oblivious Transfer
Francesco Berti, Carmit Hazay, Itamar Levi
Cryptographic protocols

Oblivious Transfer (OT) is a fundamental cryptographic primitive, becoming a crucial component of a practical secure protocol. OT is typically implemented in software, and one way to accelerate its running time is by using hardware implementations. However, such implementations are vulnerable to side-channel attacks (SCAs). On the other hand, protecting interactive protocols against SCA is highly challenging because of their longer secrets (which include inputs and randomness), more...

2024/1116 (PDF) Last updated: 2024-07-09
A Simple Post-Quantum Oblivious Transfer Protocol from Mod-LWR
Shen Dong, Hongrui Cui, Kaiyi Zhang, Kang Yang, Yu Yu
Cryptographic protocols

Oblivious transfer (OT) is a fundamental cryptographic protocol that plays a crucial role in secure multi-party computation (MPC). Most practical OT protocols by, e.g., Naor and Pinkas (SODA'01) or Chou and Orlandi (Latincrypt'15), are based on Diffie-Hellman (DH)-like assumptions and not post-quantum secure. In contrast, many other components of MPC protocols, including garbled circuits and secret sharings, are post-quantum secure. The reliance on non-post-quantum OT protocols presents a...

2024/1079 (PDF) Last updated: 2024-07-16
QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup
Geoffroy Couteau, Lalita Devadas, Srinivas Devadas, Alexander Koch, Sacha Servan-Schreiber
Cryptographic protocols

Oblivious Transfer (OT) is at the heart of secure computation and is a foundation for many applications in cryptography. Over two decades of work have led to extremely efficient protocols for evaluating OT instances in the preprocessing model, through a paradigm called OT extension. A few OT instances generated in an offline phase can be used to perform many OTs in an online phase efficiently, i.e., with very low communication and computational overheads. Specifically, traditional OT...

2024/1034 (PDF) Last updated: 2024-06-26
A Practical Protocol for Quantum Oblivious Transfer from One-Way Functions
Eleni Diamanti, Alex B. Grilo, Adriano Innocenzi, Pascal Lefebvre, Verena Yacoub, Álvaro Yángüez
Cryptographic protocols

We present a new simulation-secure quantum oblivious transfer (QOT) protocol based on one-way functions in the plain model. With a focus on practical implementation, our protocol surpasses prior works in efficiency, promising feasible experimental realization. We address potential experimental errors and their correction, offering analytical expressions to facilitate the analysis of the required quantum resources. Technically, we achieve simulation security for QOT through an equivocal and...

2024/1012 (PDF) Last updated: 2024-08-25
Supersonic OT: Fast Unconditionally Secure Oblivious Transfer
Aydin Abadi, Yvo Desmedt
Cryptographic protocols

Oblivious Transfer (OT) is a fundamental cryptographic protocol with applications in secure Multi-Party Computation, Federated Learning, and Private Set Intersection. With the advent of quantum computing, it is crucial to develop unconditionally secure core primitives like OT to ensure their continued security in the post-quantum era. Despite over four decades since OT's introduction, the literature has predominantly relied on computational assumptions, except in cases using unconventional...

2024/1006 (PDF) Last updated: 2024-06-21
Delegated-Query Oblivious Transfer and its Practical Applications
Yvo Desmedt, Aydin Abadi
Cryptographic protocols

Databases play a pivotal role in the contemporary World Wide Web and the world of cloud computing. Unfortunately, numerous privacy violations have recently garnered attention in the news. To enhance database privacy, we consider Oblivious Transfer (OT), an elegant cryptographic technology. Our observation reveals that existing research in this domain primarily concentrates on theoretical cryptographic applications, overlooking various practical aspects: - OTs assume parties have direct...

2024/963 (PDF) Last updated: 2024-06-14
Shared OT and Its Applications to Unconditional Secure Integer Equality, Comparison and Bit-Decomposition
Lucas Piske, Jeroen van de Graaf, Anderson C. A. Nascimento, Ni Trieu
Cryptographic protocols

We present unconditionally perfectly secure protocols in the semi-honest setting for several functionalities: (1) private elementwise equality; (2) private bitwise integer comparison; and (3) bit-decomposition. These protocols are built upon a new concept called Shared Oblivious Transfer (Shared OT). Shared OT extends the one-out-of-N String OT by replacing strings with integers modulo $M$ and allowing additive secret-sharing of all inputs and outputs. These extensions can be...

2024/922 (PDF) Last updated: 2024-06-13
Scalable Private Set Union, with Stronger Security
Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Dawu Gu
Cryptographic protocols

Private Set Union (PSU) protocol allows parties, each holding an input set, to jointly compute the union of the sets without revealing anything else. In the literature, scalable PSU protocols follow the “split-execute-assemble” paradigm (Kolesnikov et al., ASIACRYPT 2019); in addition, those fast protocols often use Oblivious Transfer as building blocks. Kolesnikov et al. (ASIACRYPT 2019) and Jia et al. (USENIX Security 2022), pointed out that certain security issues can be introduced in the...

2024/694 (PDF) Last updated: 2024-05-06
Lower-Bounds on Public-Key Operations in PIR
Jesko Dujmovic, Mohammad Hajiabadi
Foundations

Private information retrieval (PIR) is a fundamental cryptographic primitive that allows a user to fetch a database entry without revealing to the server which database entry it learns. PIR becomes non-trivial if the server communication is less than the database size. We show that building (even) very weak forms of single-server PIR protocols, without pre-processing, requires the number of public-key operations to scale linearly in the database size. This holds irrespective of the number of...

2024/497 (PDF) Last updated: 2024-03-28
On the Security of Data Markets and Private Function Evaluation
István Vajda
Cryptographic protocols

The income of companies working on data markets steadily grows year by year. Private function evaluation (PFE) is a valuable tool in solving corresponding security problems. The task of Controlled Private Function Evaluation and its relaxed version was introduced in [Horvath et.al., 2019]. In this article, we propose and examine several different approaches for such tasks with computational and information theoretical security against static corruption adversary. The latter level of security...

2024/450 (PDF) Last updated: 2024-03-15
The 2Hash OPRF Framework and Efficient Post-Quantum Instantiations
Ward Beullens, Lucas Dodgson, Sebastian Faller, Julia Hesse
Cryptographic protocols

An Oblivious Pseudo-Random Function (OPRF) is a two-party protocol for jointly evaluating a Pseudo-Random Function (PRF), where a user has an input x and a server has an input k. At the end of the protocol, the user learns the evaluation of the PRF using key k at the value x, while the server learns nothing about the user's input or output. OPRFs are a prime tool for building secure authentication and key exchange from passwords, private set intersection, private information retrieval,...

2024/372 (PDF) Last updated: 2024-03-04
Two-Round Maliciously-Secure Oblivious Transfer with Optimal Rate
Pedro Branco, Nico Döttling, Akshayaram Srinivasan
Cryptographic protocols

We give a construction of a two-round batch oblivious transfer (OT) protocol in the CRS model that is UC-secure against malicious adversaries and has (near) optimal communication cost. Specifically, to perform a batch of $k$ oblivious transfers where the sender's inputs are bits, the sender and the receiver need to communicate a total of $3k + o(k) \cdot \mathsf{poly}(\lambda)$ bits. We argue that $3k$ bits are required by any protocol with a black-box and straight-line simulator. The...

2024/178 (PDF) Last updated: 2024-02-09
Fast Public-Key Silent OT and More from Constrained Naor-Reingold
Dung Bui, Geoffroy Couteau, Pierre Meyer, Alain Passelègue, Mahshid Riahinia
Cryptographic protocols

Pseudorandom Correlation Functions (PCFs) allow two parties, given correlated evaluation keys, to locally generate arbitrarily many pseudorandom correlated strings, e.g. Oblivious Transfer (OT) correlations, which can then be used by the two parties to jointly run secure computation protocols. In this work, we provide a novel and simple approach for constructing PCFs for OT correlation, by relying on constrained pseudorandom functions for a class of constraints containing a weak...

2024/163 (PDF) Last updated: 2024-03-18
On Tweakable Correlation Robust Hashing against Key Leakages
Chun Guo, Xiao Wang, Kang Yang, Yu Yu
Secret-key cryptography

We continue the study of blockcipher-based (tweakable) correlation robust hash functions, which are central building blocks of circuit garbling and oblivious-transfer extension schemes. Motivated by Roy (CRYPTO 2022), we first enhance the multi-user tweakable correlation robust notion of Guo et al. (CRYPTO 2020) with a {\it key leaking oracle} that tells the adversary whether a certain user key satisfies the adversarially-chosen predicate. We then investigate the state-of-the-art hash...

2024/102 (PDF) Last updated: 2024-01-23
Laconic Branching Programs from the Diffie-Hellman Assumption
Sanjam Garg, Mohammad Hajiabadi, Peihan Miao, Alice Murphy
Cryptographic protocols

Laconic cryptography enables secure two-party computation (2PC) on unbalanced inputs with asymptotically-optimal communication in just two rounds of communication. In particular, the receiver (who sends the first-round message) holds a long input and the sender (who sends the second-round message) holds a short input, and the size of their communication to securely compute a function on their joint inputs only grows with the size of the sender's input and is independent of the receiver's...

2024/101 (PDF) Last updated: 2024-01-29
Unconditional Security using (Random) Anonymous Bulletin Board
Albert Yu, Hai H. Nguyen, Aniket Kate, Hemanta K. Maji
Cryptographic protocols

In a seminal work, Ishai et al. (FOCS–2006) studied the viability of designing unconditionally secure protocols for key agreement and secure multi-party computation (MPC) using an anonymous bulletin board (ABB) as a building block. While their results establish the feasibility of key agreement and honest-majority MPC in the ABB model, the optimality of protocols with respect to their round and communication complexity is not studied. This paper enriches this study of unconditional security...

2024/009 (PDF) Last updated: 2024-01-03
Distributed Protocols for Oblivious Transfer and Polynomial Evaluation
Aviad Ben Arie, Tamir Tassa
Cryptographic protocols

A secure multiparty computation (MPC) allows several parties to compute a function over their inputs while keeping their inputs private. In its basic setting, the protocol involves only parties that hold inputs. In distributed MPC, there are also external servers who perform a distributed protocol that executes the needed computation, without learning information on the inputs and outputs. Here we propose distributed protocols for several fundamental MPC functionalities. We begin with a...

2023/1951 (PDF) Last updated: 2023-12-23
Protection Against Subversion Corruptions via Reverse Firewalls in the plain Universal Composability Framework
Paula Arnold, Sebastian Berndt, Jörn Müller-Quade, Astrid Ottenhues
Foundations

While many modern cryptographic primitives have stood the test of time, attacker have already begun to expand their attacks beyond classical cryptanalysis by specifically targeting implementations. One of the most well-documented classes of such attacks are subversion (or substitution) attacks, where the attacker replaces the Implementation of the cryptographic primitive in an undetectable way such that the subverted implementation leaks sensitive information of the user during a protocol...

2023/1932 (PDF) Last updated: 2023-12-20
Multipars: Reduced-Communication MPC over Z2k
Sebastian Hasler, Pascal Reisert, Marc Rivinius, Ralf Küsters
Cryptographic protocols

In recent years, actively secure SPDZ-like protocols for dishonest majority, like SPD$\mathbb Z_{2^k}$, Overdrive2k, and MHz2k, over base rings $\mathbb Z_{2^k}$ have become more and more efficient. In this paper, we present a new actively secure MPC protocol Multipars that outperforms these state-of-the-art protocols over $\mathbb Z_{2^k}$ by more than a factor of 2 in the two-party setup in terms of communication. Multipars is the first actively secure N-party protocol over $\mathbb...

2023/1930 (PDF) Last updated: 2024-07-12
Toward A Practical Multi-party Private Set Union
Jiahui Gao, Son Nguyen, Ni Trieu
Cryptographic protocols

This paper studies a multi-party private set union (mPSU), a fundamental cryptographic problem that allows multiple parties to compute the union of their respective datasets without revealing any additional information. We propose an efficient mPSU protocol which is secure in the presence of any number of colluding semi-honest participants. Our protocol avoids computationally expensive homomorphic operations or generic multi-party computation, thus providing an efficient solution for mPSU....

2023/1928 (PDF) Last updated: 2023-12-19
Unconditionally Secure Quantum Bit Commitment and Quantum Oblivious Transfer
Ping Wang, Yikang Lei, Yiting Su
Cryptographic protocols

Recently, a novel secure quantum bit commitment (QBC) protocol has been proposed [29]. However, the protocol requires Alice and Bob to share Bell states in advance, making the protocol lacking in practicality. In this paper, we propose two new unconditionally secure quantum bit commitment protocols that do not require pre-shared Bell states based on entangled and non-entangled states, respectively. Their security stems from quantum mechanical properties such as quantum superposition, quantum...

2023/1827 (PDF) Last updated: 2023-11-28
Key Exchange in the Post-Snowden Era: UC Secure Subversion-Resilient PAKE
Suvradip Chakraborty, Lorenzo Magliocco, Bernardo Magri, Daniele Venturi
Public-key cryptography

Password-Authenticated Key Exchange (PAKE) allows two parties to establish a common high-entropy secret from a possibly low-entropy pre-shared secret such as a password. In this work, we provide the first PAKE protocol with subversion resilience in the framework of universal composability (UC), where the latter roughly means that UC security still holds even if one of the two parties is malicious and the honest party's code has been subverted (in an undetectable manner). We achieve this...

2023/1641 (PDF) Last updated: 2023-10-23
PSKPIR: Symmetric Keyword Private Information Retrieval based on PSI with Payload
Zuodong Wu, Dawei Zhang, Yong Li, Xu Han
Applications

Symmetric Private Information Retrieval (SPIR) is a protocol that protects privacy during data transmission. However, the existing SPIR focuses only on the privacy of the data to be requested on the server, without considering practical factors such as the payload that may be present during data transmission. This could seriously prevent SPIR from being applied to many complex data scenarios and hinder its further expansion. To solve such problems, we propose a primitive (PSKPIR) for...

2023/1512 (PDF) Last updated: 2023-10-03
List Oblivious Transfer and Applications to Round-Optimal Black-Box Multiparty Coin Tossing
Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, Hendrik Waldner
Cryptographic protocols

In this work we study the problem of minimizing the round complexity for securely evaluating multiparty functionalities while making black-box use of polynomial time assumptions. In Eurocrypt 2016, Garg et al. showed that, assuming all parties have access to a broadcast channel, then at least four rounds of communication are required to securely realize non-trivial functionalities in the plain model. A sequence of works follow-up the result of Garg et al. matching this lower bound under a...

2023/1470 (PDF) Last updated: 2023-09-25
Zero-Knowledge Systems from MPC-in-the-Head and Oblivious Transfer
Cyprien Delpech de Saint Guilhem, Ehsan Ebrahimi, Barry van Leeuwen
Cryptographic protocols

Zero-knowledge proof or argument systems for generic NP statements (such as circuit satisfiability) have typically been instantiated with cryptographic commitment schemes; this implies that the security of the proof system (e.g., computational or statistical) depends on that of the chosen commitment scheme. The MPC-in-the-Head paradigm (Ishai et al., JoC 2009) uses the same approach to construct zero-knowledge systems from the simulated execution of secure multiparty computation...

2023/1425 (PDF) Last updated: 2023-09-20
Popping “R-propping”: breaking hardness assumptions for matrix groups over F_{2^8}
Fernando Virdia
Attacks and cryptanalysis

A recent series of works (Hecht, IACR ePrint, 2020–2021) propose to build post-quantum public-key encapsulation, digital signatures, group key agreement and oblivious transfer from "R-propped" variants of the Symmetrical Decomposition and Discrete Logarithm problems for matrix groups over $\mathbb{F}_{2^8}$. We break all four proposals by presenting a linearisation attack on the Symmetrical Decomposition platform, a forgery attack on the signature scheme, and a demonstration of the...

2023/1225 (PDF) Last updated: 2023-08-12
One-Message Secure Reductions: On the Cost of Converting Correlations
Yuval Ishai, Mahimna Kelkar, Varun Narayanan, Liav Zafar
Cryptographic protocols

Correlated secret randomness is a useful resource for secure computation protocols, often enabling dramatic speedups compared to protocols in the plain model. This has motivated a line of work on identifying and securely generating useful correlations. Different kinds of correlations can vary greatly in terms of usefulness and ease of generation. While there has been major progress on efficiently generating oblivious transfer (OT) correlations, other useful kinds of correlations are...

2023/1176 (PDF) Last updated: 2023-10-11
Composable Oblivious Pseudo-Random Functions via Garbled Circuits
Sebastian Faller, Astrid Ottenhues, Johannes Ottenhues
Cryptographic protocols

Oblivious Pseudo-Random Functions (OPRFs) are a central tool for building modern protocols for authentication and distributed computation. For example, OPRFs enable simple login protocols that do not reveal the password to the provider, which helps to mitigate known shortcomings of password-based authentication such as password reuse or mix-up. Reliable treatment of passwords becomes more and more important as we login to a multitude of services with different passwords in our daily...

2023/1173 (PDF) Last updated: 2023-08-07
Round-Optimal Black-Box MPC in the Plain Model
Yuval Ishai, Dakshita Khurana, Amit Sahai, Akshayaram Srinivasan
Cryptographic protocols

We give the first construction of a fully black-box round-optimal secure multiparty computation (MPC) protocol in the plain model. Our protocol makes black-box use of a sub-exponentially secure two-message statistical sender private oblivious transfer (SSP-OT), which in turn can be based on (sub-exponential variants of) almost all of the standard cryptographic assumptions known to imply public-key cryptography.

2023/1170 (PDF) Last updated: 2023-07-29
Two-Round Adaptively Secure MPC from Isogenies, LPN, or CDH
Navid Alamati, Hart Montgomery, Sikhar Patranabis, Pratik Sarkar
Cryptographic protocols

We present a new framework for building round-optimal (two-round) $adaptively$ secure MPC. We show that a relatively weak notion of OT that we call $indistinguishability \ OT \ with \ receiver \ oblivious \ sampleability$ (r-iOT) is enough to build two-round, adaptively secure MPC against $malicious$ adversaries in the CRS model. We then show how to construct r-iOT from CDH, LPN, or isogeny-based assumptions that can be viewed as group actions (such as CSIDH and CSI-FiSh). This yields the...

2023/1169 (PDF) Last updated: 2023-08-03
Efficient Oblivious Evaluation Protocol and Conditional Disclosure of Secrets for DFA
Kittiphop Phalakarn, Nuttapong Attrapadung, Kanta Matsuura

In oblivious finite automata evaluation, one party holds a private automaton, and the other party holds a private string of characters. The objective is to let the parties know whether the string is accepted by the automaton or not, while keeping their inputs secret. The applications include DNA searching, pattern matching, and more. Most of the previous works are based on asymmetric cryptographic primitives, such as homomorphic encryption and oblivious transfer. These primitives are...

2023/1159 (PDF) Last updated: 2023-10-09
Semi-Honest 2-Party Faithful Truncation from Two-Bit Extraction
Huan Zou, Yuting Xiao, Rui Zhang
Applications

As a fundamental operation in fixed-point arithmetic, truncation can bring the product of two fixed-point integers back to the fixed-point representation. In large-scale applications like privacy-preserving machine learning, it is essential to have faithful truncation that accurately eliminates both big and small errors. In this work, we improve and extend the results of the oblivious transfer based faithful truncation protocols initialized by Cryptflow2 (Rathee et al., CCS 2020)....

2023/1145 (PDF) Last updated: 2024-08-24
Instantiating the Hash-Then-Evaluate Paradigm: Strengthening PRFs, PCFs, and OPRFs.
Chris Brzuska, Geoffroy Couteau, Christoph Egger, Pihla Karanko, Pierre Meyer
Foundations

We instantiate the hash-then-evaluate paradigm for pseudorandom functions (PRFs), $\mathsf{PRF}(k, x) := \mathsf{wPRF}(k, \mathsf{RO}(x))$, which builds a PRF $\mathsf{PRF}$ from a weak PRF $\mathsf{wPRF}$ via a public preprocessing random oracle $\mathsf{RO}$. In applications to secure multiparty computation (MPC), only the low-complexity wPRF performs secret-depending operations. Our construction replaces RO by $f(k_H , \mathsf{elf}(x))$, where $f$ is a non-adaptive PRF and the key $k_H$...

2023/1136 (PDF) Last updated: 2024-08-13
Secure Multiparty Computation with Identifiable Abort from Vindicating Release
Ran Cohen, Jack Doerner, Yashvanth Kondi, abhi shelat
Cryptographic protocols

In the dishonest-majority setting, secure multiparty computation (MPC) with identifiable abort (IA) guarantees that honest parties can identify and agree upon at least one cheating party if the protocol does not produce an output. Known MPC constructions with IA rely on generic zero-knowledge proofs, adaptively secure oblivious transfer (OT) protocols, or homomorphic primitives, and thus incur a substantial penalty with respect to protocols that abort without identifiability. We introduce...

2023/1011 (PDF) Last updated: 2023-06-29
A Framework for Statistically Sender Private OT with Optimal Rate
Pedro Branco, Nico Döttling, Akshayaram Srinivasan
Cryptographic protocols

Statistical sender privacy (SSP) is the strongest achievable security notion for two-message oblivious transfer (OT) in the standard model, providing statistical security against malicious receivers and computational security against semi-honest senders. In this work we provide a novel construction of SSP OT from the Decisional Diffie-Hellman (DDH) and the Learning Parity with Noise (LPN) assumptions achieving (asymptotically) optimal amortized communication complexity, i.e. it achieves rate...

2023/1006 (PDF) Last updated: 2023-06-28
Reusable Secure Computation in the Plain Model
Vipul Goyal, Akshayaram Srinivasan, Mingyuan Wang
Foundations

Consider the standard setting of two-party computation where the sender has a secret function $f$ and the receiver has a secret input $x$ and the output $f(x)$ is delivered to the receiver at the end of the protocol. Let us consider the unidirectional message model where only one party speaks in each round. In this setting, Katz and Ostrovsky (Crypto 2004) showed that at least four rounds of interaction between the parties are needed in the plain model (i.e., no trusted setup) if the...

2023/1002 (PDF) Last updated: 2023-06-27
Oblivious Transfer from Rerandomizable PKE
Shuaishuai Li, Cong Zhang, Dongdai Lin
Cryptographic protocols

The relationship between oblivious transfer (OT) and public-key encryption (PKE) has been studied by Gertner et al. (FOCS 2000). They showed that OT can be constructed from special types of PKE, i.e., PKE with oblivious sampleability of public keys or ciphertexts. In this work, we give new black-box constructions of OT from PKE without any oblivious sampleability. Instead, we require that the PKE scheme is rerandomizable, meaning that one can use the public key to rerandomize a ciphertext...

2023/996 (PDF) Last updated: 2023-06-26
Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures From VOLE-in-the-Head
Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß, Emmanuela Orsini, Lawrence Roy, Peter Scholl
Cryptographic protocols

We present a new method for transforming zero-knowledge protocols in the designated verifier setting into public-coin protocols, which can be made non-interactive and publicly verifiable. Our transformation applies to a large class of ZK protocols based on oblivious transfer. In particular, we show that it can be applied to recent, fast protocols based on vector oblivious linear evaluation (VOLE), with a technique we call VOLE-in-the-head, upgrading these protocols to support public...

2023/989 (PDF) Last updated: 2023-06-25
Detection of Password Reuse and Credential Stuffing: A Server-side Approach
Sai Sandilya Konduru, Sweta Mishra
Cryptographic protocols

Considering password-based authentication technique, password memorability is a real challenge on users. Hence, password reuse across different web applications is a common trend among users which makes websites vulnerable to credential stuffing attack. A solution as password manager helps the users to create random passwords for different websites on the user machine. However, it has practical challenges. Password database breach detection is another related and challenging task....

2023/919 (PDF) Last updated: 2023-06-12
Threshold Private Set Intersection with Better Communication Complexity
Satrajit Ghosh, Mark Simkin
Cryptographic protocols

Given $\ell$ parties with sets $X_1, \dots, X_\ell$ of size $n$, we would like to securely compute the intersection $\cap_{i=1}^\ell X_i$, if it is larger than $n-t$ for some threshold $t$, without revealing any other additional information. It has previously been shown (Ghosh and Simkin, Crypto 2019) that this function can be securely computed with a communication complexity that only depends on $t$ and in particular does not depend on $n$. For small values of $t$, this results in protocols...

2023/882 (PDF) Last updated: 2023-06-08
Expand-Convolute Codes for Pseudorandom Correlation Generators from LPN
Srinivasan Raghuraman, Peter Rindal, Titouan Tanguy
Cryptographic protocols

The recent development of pseudorandom correlation generators (PCG) holds tremendous promise for highly efficient MPC protocols. Among other correlations, PCGs allow for the efficient generation of oblivious transfer (OT) and vector oblivious linear evaluations (VOLE) with sublinear communication and concretely good computational overhead. This type of PCG makes use of a so-called LPN-friendly error-correcting code. That is, for large dimensions the code should have very efficient encoding...

2023/877 (PDF) Last updated: 2023-09-21
Public-Key Encryption with Quantum Keys
Khashayar Barooti, Alex B. Grilo, Loïs Huguenin-Dumittan, Giulio Malavolta, Or Sattath, Quoc-Huy Vu, Michael Walter
Foundations

In the framework of Impagliazzo's five worlds, a distinction is often made between two worlds, one where public-key encryption exists (Cryptomania), and one in which only one-way functions exist (MiniCrypt). However, the boundaries between these worlds can change when quantum information is taken into account. Recent work has shown that quantum variants of oblivious transfer and multi-party computation, both primitives that are classically in Cryptomania, can be constructed from one-way...

2023/866 (PDF) Last updated: 2023-06-07
Decoding LTFs in the Generic Group Model
Dennis Hofheinz, Julia Kastner, Akin Ünal, Bogdan Ursu
Foundations

Lossy trapdoor functions (LTFs) constitute a useful and versatile cryptographic building block. LTFs have found applications in various types of encryption schemes, are closely connected to statistically secure oblivious transfer protocols, and have led to the first constructions of group-based trapdoor functions. However, with one recent exception, all known group-based LTFs are comparatively inefficient, and in particular suffer from large images. In this work, we attempt to explain this...

2023/849 (PDF) Last updated: 2023-09-19
Towards Topology-Hiding Computation from Oblivious Transfer
Marshall Ball, Alexander Bienstock, Lisa Kohl, Pierre Meyer
Cryptographic protocols

Topology-Hiding Computation (THC) enables parties to securely compute a function on an incomplete network without revealing the network topology. It is known that secure computation on a complete network can be based on oblivious transfer (OT), even if a majority of the participating parties are corrupt. In contrast, THC in the dishonest majority setting is only known from assumptions that imply (additively) homomorphic encryption, such as Quadratic Residuosity, Decisional Diffie-Hellman,...

2023/817 (PDF) Last updated: 2023-06-02
Oblivious Transfer with Constant Computational Overhead
Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas Resch, Peter Scholl
Cryptographic protocols

The computational overhead of a cryptographic task is the asymptotic ratio between the computational cost of securely realizing the task and that of realizing the task with no security at all. Ishai, Kushilevitz, Ostrovsky, and Sahai (STOC 2008) showed that secure two-party computation of Boolean circuits can be realized with constant computational overhead, independent of the desired level of security, assuming the existence of an oblivious transfer (OT) protocol and a local...

2023/765 (PDF) Last updated: 2023-12-14
Threshold ECDSA in Three Rounds
Jack Doerner, Yashvanth Kondi, Eysa Lee, abhi shelat
Cryptographic protocols

We present a three-round protocol for threshold ECDSA signing with malicious security against a dishonest majority, which information-theoretically UC-realizes a standard threshold signing functionality, assuming only ideal commitment and two-party multiplication primitives. Our protocol combines an intermediate representation of ECDSA signatures that was recently introduced by Abram et al. (Eurocrypt'22) with an efficient statistical consistency check reminiscent of the ones used by the...

2023/643 (PDF) Last updated: 2023-05-05
Privacy-Preserving Regular Expression Matching using Nondeterministic Finite Automata
Ning Luo, Chenkai Weng, Jaspal Singh, Gefei Tan, Ruzica Piskac, Mariana Raykova
Cryptographic protocols

Motivated by the privacy requirements in network intrusion detection and DNS policy checking, we have developed a suite of protocols and algorithms for regular expression matching with enhanced privacy: - A new regular expression matching algorithm that is oblivious to the input strings, of which the complexity is only $O(mn)$ where $m$ and $n$ are the length of strings and the regular expression respectively. It is achieved by exploiting the structure of the Thompson nondeterministic...

2023/639 (PDF) Last updated: 2024-02-14
OPRFs from Isogenies: Designs and Analysis
Lena Heimberger, Tobias Hennerbichler, Fredrik Meisingseth, Sebastian Ramacher, Christian Rechberger
Cryptographic protocols

Oblivious Pseudorandom Functions (OPRFs) are an elementary building block in cryptographic and privacy-preserving applications. However, while there are numerous pre-quantum secure OPRF constructions, few options exist in a post-quantum secure setting, and of those even fewer are practical for modern-day applications. In this work, we focus on isogeny group actions, as the associated low bandwidth leads to efficient constructions. Our results focus on the Naor-Reingold OPRF. We introduce...

2023/609 (PDF) Last updated: 2023-04-28
Enabling Two-Party Secure Computation on Set Intersection
Ferhat Karakoç, Alptekin Küpçü
Cryptographic protocols

In this paper, we propose the first linear two-party secure-computation private set intersection (PSI) protocol, in the semi-honest adversary model, computing the following functionality. One of the parties ($P_X$) inputs a set of items $X = \{x_j \mid 1 \le j \le n_X\}$, whereas the other party ($P_Y$) inputs a set of items $Y = \{y_i \mid 1\le i \le n_Y \}$ and a set of corresponding data pairs $D_Y = \{ (d_i^0,d_i^1) \mid 1 \le i \le n_Y\}$ having the same cardinality with $Y$. While...

2023/564 (PDF) Last updated: 2023-04-20
Secure Computation with Shared EPR Pairs (Or: How to Teleport in Zero-Knowledge)
James Bartusek, Dakshita Khurana, Akshayaram Srinivasan
Cryptographic protocols

Can a sender non-interactively transmit one of two strings to a receiver without knowing which string was received? Does there exist minimally-interactive secure multiparty computation that only makes (black-box) use of symmetric-key primitives? We provide affirmative answers to these questions in a model where parties have access to shared EPR pairs, thus demonstrating the cryptographic power of this resource. First, we construct a one-shot (i.e., single message) string oblivious...

2023/527 (PDF) Last updated: 2024-07-08
Squirrel: A Scalable Secure Two-Party Computation Framework for Training Gradient Boosting Decision Tree
Wen-jie Lu, Zhicong Huang, Qizhi Zhang, Yuchen Wang, Cheng Hong
Applications

Gradient Boosting Decision Tree (GBDT) and its variants are widely used in industry, due to their strong interpretability. Secure multi-party computation allows multiple data owners to compute a function jointly while keeping their input private. In this work, we present Squirrel, a two-party GBDT training framework on a vertically split dataset, where two data owners each hold different features of the same data samples. Squirrel is private against semi-honest adversaries, and no sensitive...

2023/514 (PDF) Last updated: 2023-04-10
Black-Box Reusable NISC with Random Oracles
Yuval Ishai, Dakshita Khurana, Amit Sahai, Akshayaram Srinivasan
Cryptographic protocols

We revisit the problem of {\em reusable} non-interactive secure computation (NISC). A standard NISC protocol for a sender-receiver functionality $f$ enables the receiver to encrypt its input $x$ such that any sender, on input $y$, can send back a message revealing only $f(x,y)$. Security should hold even when either party can be malicious. A {\em reusable} NISC protocol has the additional feature that the receiver's message can be safely reused for computing multiple outputs $f(x,y_i)$. Here...

2023/513 (PDF) Last updated: 2023-04-10
Sublinear Secure Computation from New Assumptions
Elette Boyle, Geoffroy Couteau, Pierre Meyer
Public-key cryptography

Secure computation enables mutually distrusting parties to jointly compute a function on their secret inputs, while revealing nothing beyond the function output. A long-running challenge is understanding the required communication complexity of such protocols---in particular, when communication can be sublinear in the circuit representation size of the desired function. For certain functions, such as Private Information Retrieval (PIR), this question extends to even sublinearity in the input...

2023/404 (PDF) Last updated: 2023-03-21
Efficient Laconic Cryptography from Learning With Errors
Nico Döttling, Dimitris Kolonelos, Russell W. F. Lai, Chuanwei Lin, Giulio Malavolta, Ahmadreza Rahimi

Laconic cryptography is an emerging paradigm that enables cryptographic primitives with sublinear communication complexity in just two messages. In particular, a two-message protocol between Alice and Bob is called laconic if its communication and computation complexity are essentially independent of the size of Alice's input. This can be thought of as a dual notion of fully-homomorphic encryption, as it enables "Bob-optimized" protocols. This paradigm has led to tremendous progress in...

2023/363 (PDF) Last updated: 2023-03-13
Composable Long-Term Security with Rewinding
Robin Berger, Brandon Broadnax, Michael Klooß, Jeremias Mechler, Jörn Müller-Quade, Astrid Ottenhues, Markus Raiber
Foundations

Long-term security, a variant of Universally Composable (UC) security introduced by Müller-Quade and Unruh (JoC ’10), allows to analyze the security of protocols in a setting where all hardness assumptions no longer hold after the protocol execution has finished. Such a strict notion is highly desirable when properties such as input privacy need to be guaranteed for a long time, e.g. zero-knowledge proofs for secure electronic voting. Strong impossibility results rule out so-called...

2023/345 (PDF) Last updated: 2023-03-09
Encryption with Quantum Public Keys
Alex B. Grilo, Or Sattath, Quoc-Huy Vu
Foundations

It is an important question to find constructions of quantum cryptographic protocols which rely on weaker computational assumptions than classical protocols. Recently, it has been shown that oblivious transfer and multi-party computation can be constructed from one-way functions, whereas this is impossible in the classical setting in a black-box way. In this work, we study the question of building quantum public-key encryption schemes from one-way functions and even weaker assumptions....

2023/311 (PDF) Last updated: 2023-10-12
Oblivious Transfer from Zero-Knowledge Proofs, or How to Achieve Round-Optimal Quantum Oblivious Transfer and Zero-Knowledge Proofs on Quantum States
Léo Colisson, Garazi Muguruza, Florian Speelman
Cryptographic protocols

We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable (quantum) oblivious transfer (OT) protocol, mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely to exist classically as Cryptomania is believed to be different from Minicrypt. In particular, by instantiating our construction using...

2023/278 (PDF) Last updated: 2023-12-20
Actively Secure Half-Gates with Minimum Overhead under Duplex Networks
Hongrui Cui, Xiao Wang, Kang Yang, Yu Yu
Cryptographic protocols

Actively secure two-party computation (2PC) is one of the canonical building blocks in modern cryptography. One main goal for designing actively secure 2PC protocols is to reduce the communication overhead, compared to semi-honest 2PC protocols. In this paper, we make significant progress in closing this gap by proposing two new actively secure constant-round 2PC protocols, one with one-way communication of $2\kappa+5$ bits per AND gate (for $\kappa$-bit computational security and any...

2023/270 (PDF) Last updated: 2023-02-23
Actively Secure Arithmetic Computation and VOLE with Constant Computational Overhead
Benny Applebaum, Niv Konstantini
Foundations

We study the complexity of two-party secure arithmetic computation where the goal is to evaluate an arithmetic circuit over a finite field $F$ in the presence of an active (aka malicious) adversary. In the passive setting, Applebaum et al. (Crypto 2017) constructed a protocol that only makes a *constant* (amortized) number of field operations per gate. This protocol uses the underlying field $F$ as a black box, makes black-box use of (standard) oblivious transfer, and its security is based...

2023/269 (PDF) Last updated: 2023-02-24
Simple Two-Round OT in the Explicit Isogeny Model
Emmanuela Orsini, Riccardo Zanotto
Public-key cryptography

In this work we apply the Type-Safe (TS) generic group model, recently introduced by Zhandry (2022), to the more general setting of group actions and extend it to the universal composability (UC) framework of Canetti (2000). We then relax this resulting model, that we call UC-TS, to define an algebraic action framework (UC-AA), where the adversaries can behave algebraically, similarly to the algebraic group model (AGM), but for group actions. Finally, we instantiate UC-AA with isogeny-based...

2022/1539 (PDF) Last updated: 2022-11-07
Oblivious-Transfer Complexity of Noisy Coin-Toss via Secure Zero Communication Reductions
Saumya Goyal, Varun Narayanan, Manoj Prabhakaran
Foundations

In p-noisy coin-tossing, Alice and Bob obtain fair coins which are of opposite values with probability p. Its Oblivious-Transfer (OT) complexity refers to the least number of OTs required by a semi-honest perfectly secure 2-party protocol for this task. We show a tight bound of Θ(log 1/p) for the OT complexity of p-noisy coin-tossing. This is the first instance of a lower bound for OT complexity that is independent of the input/output length of the function. We obtain our result by...

2022/1535 (PDF) Last updated: 2023-02-23
Reverse Firewalls for Oblivious Transfer Extension and Applications to Zero-Knowledge
Suvradip Chakraborty, Chaya Ganesh, Pratik Sarkar
Cryptographic protocols

In the setting of subversion, an adversary tampers with the machines of the honest parties thus leaking the honest parties' secrets through the protocol transcript. The work of Mironov and Stephens-Davidowitz (EUROCRYPT’15) introduced the idea of reverse firewalls (RF) to protect against tampering of honest parties' machines. All known constructions in the RF framework rely on the malleability of the underlying operations in order for the RF to rerandomize/sanitize the transcript. RFs are...

2022/1525 (PDF) Last updated: 2023-03-11
Endemic Oblivious Transfer via Random Oracles, Revisited
Zhelei Zhou, Bingsheng Zhang, Hong-Sheng Zhou, Kui Ren
Cryptographic protocols

The notion of Endemic Oblivious Transfer (EOT) was introduced by Masny and Rindal (CCS'19). EOT offers a weaker security guarantee than the conventional random OT; namely, the malicious parties can fix their outputs arbitrarily. The authors presented a 1-round UC-secure EOT protocol under a tailor-made and non-standard assumption, Choose-and-Open DDH, in the RO model. In this work, we systematically study EOT in the UC/GUC framework. We present a new 1-round UC-secure EOT construction...

2022/1517 (PDF) Last updated: 2023-10-11
Best-of-Both-Worlds Multiparty Quantum Computation with Publicly Verifiable Identifiable Abort
Kai-Min Chung, Mi-Ying (Miryam) Huang, Er-Cheng Tang, Jiapeng Zhang
Cryptographic protocols

Alon et al. (CRYPTO 2021) introduced a multiparty quantum computation protocol that is secure with identifiable abort (MPQC-SWIA). However, their protocol allows only inside MPQC parties to know the identity of malicious players. This becomes problematic when two groups of people disagree and need a third party, like a jury, to verify who the malicious party is. This issue takes on heightened significance in the quantum setting, given that quantum states may exist in only a single copy....

2022/1511 (PDF) Last updated: 2023-02-06
Round-Optimal Oblivious Transfer and MPC from Computational CSIDH
Saikrishna Badrinarayanan, Daniel Masny, Pratyay Mukherjee, Sikhar Patranabis, Srinivasan Raghuraman, Pratik Sarkar
Cryptographic protocols

We present the first round-optimal and plausibly quantum-safe oblivious transfer (OT) and multi-party computation (MPC) protocols from the computational CSIDH assumption - the weakest and most widely studied assumption in the CSIDH family of isogeny-based assumptions. We obtain the following results: - The first round-optimal maliciously secure OT and MPC protocols in the plain model that achieve (black-box) simulation-based security while relying on the computational CSIDH...

2022/1431 (PDF) Last updated: 2023-12-21
Half-Tree: Halving the Cost of Tree Expansion in COT and DPF
Xiaojie Guo, Kang Yang, Xiao Wang, Wenhao Zhang, Xiang Xie, Jiang Zhang, Zheli Liu
Cryptographic protocols

GGM tree is widely used in the design of correlated oblivious transfer (COT), subfield vector oblivious linear evaluation (sVOLE), distributed point function (DPF), and distributed comparison function (DCF). Often, the cost associated with GGM tree dominates the computation and communication of these protocols. In this paper, we propose a suite of optimizations that can reduce this cost by half. • Halving the cost of COT and sVOLE. Our COT protocol introduces extra correlation to each...

2022/1371 (PDF) Last updated: 2024-07-14
On the Security of KOS
Benjamin E. Diamond
Cryptographic protocols

We study the security of the random oblivious transfer extension protocol of Keller, Orsini, and Scholl (CRYPTO '15), whose security proof was recently invalidated by Roy (CRYPTO '22). We show that KOS is asymptotically secure. Our proof involves a subtle analysis of the protocol's "correlation check", and introduces several new techniques. We also study the protocol's concrete security. We establish concrete security for security parameter values on the order of 5,000. We present evidence...

2022/1353 (PDF) Last updated: 2023-09-21
Anonymous Permutation Routing
Paul Bunn, Eyal Kushilevitz, Rafail Ostrovsky
Cryptographic protocols

The Non-Interactive Anonymous Router (NIAR) model was introduced by Shi and Wu [SW21] as an alternative to conventional solutions to the anonymous routing problem, in which a set of senders wish to send messages to a set of receivers. In contrast to most known approaches to support anonymous routing (e.g. mix-nets, DC-nets, etc.) which rely on a network of routers communicating with users via interactive protocols, the NIAR model assumes a $single$ router and is inherently...

2022/1336 (PDF) Last updated: 2024-05-08
One-Wayness in Quantum Cryptography
Tomoyuki Morimae, Takashi Yamakawa
Foundations

The existence of one-way functions is one of the most fundamental assumptions in classical cryptography. In the quantum world, on the other hand, there are evidences that some cryptographic primitives can exist even if one-way functions do not exist [Morimae and Yamakawa, CRYPTO 2022; Ananth, Qian, and Yuen, CRYPTO 2022]. We therefore have the following important open problem in quantum cryptography: What is the most fundamental element in quantum cryptography? In this direction, Brakerski,...

2022/1288 (PDF) Last updated: 2022-09-28
Round-Optimal Black-Box Secure Computation from Two-Round Malicious OT
Yuval Ishai, Dakshita Khurana, Amit Sahai, Akshayaram Srinivasan
Cryptographic protocols

We give round-optimal {\em black-box} constructions of two-party and multiparty protocols in the common random/reference string (CRS) model, with security against malicious adversaries, based on any two-round oblivious transfer (OT) protocol in the same model. Specifically, we obtain two types of results. \begin{enumerate} \item {\bf Two-party protocol.} We give a (two-round) {\it two-sided NISC} protocol that makes black-box use of two-round (malicious-secure) OT in the CRS model....

2022/1269 (PDF) Last updated: 2022-09-25
Collusion-Resistant Functional Encryption for RAMs
Prabhanjan Ananth, Kai-Min Chung, Xiong Fan, Luowen Qian
Public-key cryptography

In recent years, functional encryption (FE) has established itself as one of the fundamental primitives in cryptography. The choice of model of computation to represent the functions associated with the functional keys plays a critical role in the complexity of the algorithms of an FE scheme. Historically, the functions are represented as circuits. However, this results in the decryption time of the FE scheme growing proportional to not only the worst case running time of the function but...

2022/1207 (PDF) Last updated: 2022-09-13
Attaining GOD Beyond Honest Majority With Friends and Foes
Aditya Hegde, Nishat Koti, Varsha Bhat Kukkala, Shravani Patil, Arpita Patra, Protik Paul
Cryptographic protocols

In the classical notion of multiparty computation (MPC), an honest party learning private inputs of others, either as a part of protocol specification or due to a malicious party's unspecified messages, is not considered a potential breach. Several works in the literature exploit this seemingly minor loophole to achieve the strongest security of guaranteed output delivery via a trusted third party, which nullifies the purpose of MPC. Alon et al. (CRYPTO 2020) presented the notion of Friends...

2022/1193 (PDF) Last updated: 2022-09-10
Knowledge Encryption and Its Applications to Simulatable Protocols With Low Round-Complexity
Yi Deng, Xinxuan Zhang
Cryptographic protocols

We introduce a new notion of public key encryption, knowledge encryption, for which its ciphertexts can be reduced to the public-key, i.e., any algorithm that can break the ciphertext indistinguishability can be used to extract the (partial) secret key. We show that knowledge encryption can be built solely on any two-round oblivious transfer with game-based security, which are known based on various standard (polynomial-hardness) assumptions, such as the DDH, the Quadratic($N^{th}$)...

2022/1191 (PDF) Last updated: 2022-09-09
A New Framework for Quantum Oblivious Transfer
Amit Agarwal, James Bartusek, Dakshita Khurana, Nishant Kumar
Foundations

We present a new template for building oblivious transfer from quantum information that we call the ``fixed basis'' framework. Our framework departs from prior work (eg., Crepeau and Kilian, FOCS '88) by fixing the correct choice of measurement basis used by each player, except for some hidden trap qubits that are intentionally measured in a conjugate basis. We instantiate this template in the quantum random oracle model (QROM) to obtain simple protocols that implement, with security...

2022/1190 (PDF) Last updated: 2022-09-09
Statistical Security in Two-Party Computation Revisited
Saikrishna Badrinarayanan, Sikhar Patranabis, Pratik Sarkar
Cryptographic protocols

We present a new framework for building round-optimal one-sided statistically secure two party computation (2PC) protocols in the plain model. We demonstrate that a relatively weak notion of oblivious transfer (OT), namely a three round elementary oblivious transfer $\textsf{eOT}$ with statistical receiver privacy, along with a non-interactive commitment scheme suffices to build a one-sided statistically secure two party computation protocol with black-box simulation. Our framework enables...

2022/1181 (PDF) Last updated: 2022-11-24
On the computational hardness needed for quantum cryptography
Zvika Brakerski, Ran Canetti, Luowen Qian
Foundations

In the classical model of computation, it is well established that one-way functions (OWF) are minimal for computational cryptography: They are essential for almost any cryptographic application that cannot be realized with respect to computationally unbounded adversaries. In the quantum setting, however, OWFs appear not to be essential (Kretschmer 2021; Ananth et al., Morimae and Yamakawa 2022), and the question of whether such a minimal primitive exists remains open. We consider EFI...

2022/1035 (PDF) Last updated: 2022-08-10
Efficient Pseudorandom Correlation Generators from Ring-LPN
Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Scholl
Cryptographic protocols

Secure multiparty computation can often utilize a trusted source of correlated randomness to achieve better efficiency. A recent line of work, initiated by Boyle et al. (CCS 2018, Crypto 2019), showed how useful forms of correlated randomness can be generated using a cheap, one-time interaction, followed by only "silent" local computation. This is achieved via a pseudorandom correlation generator (PCG), a deterministic function that stretches short correlated seeds into long instances of a...

2022/887 (PDF) Last updated: 2022-09-06
Round-Optimal Black-Box Protocol Compilers
Yuval Ishai, Dakshita Khurana, Amit Sahai, Akshayaram Srinivasan
Cryptographic protocols

We give black-box, round-optimal protocol compilers from semi-honest security to malicious security in the Random Oracle Model (ROM) and in the 1-out-of-2 oblivious transfer (OT) correlations model. We use our compilers to obtain the following black-box constructions of general-purpose protocols for secure computation tolerating static, malicious corruptions of all-but-one participants: \begin{itemize} \item A two-round, two-party protocol in the random oracle model, making...

2022/836 (PDF) Last updated: 2022-06-24
Authenticated Garbling from Simple Correlations
Samuel Dittmer, Yuval Ishai, Steve Lu, Rafail Ostrovsky
Cryptographic protocols

We revisit the problem of constant-round malicious secure two-party computation by considering the use of simple correlations, namely sources of correlated randomness that can be securely generated with sublinear communication complexity and good concrete efficiency. The current state-of-the-art protocol of Katz et al. (Crypto 2018) achieves malicious security by realizing a variant of the authenticated garbling functionality of Wang et al. (CCS 2017). Given oblivious transfer...

2022/826 (PDF) Last updated: 2022-07-05
Pika: Secure Computation using Function Secret Sharing over Rings
Sameer Wagh
Cryptographic protocols

Machine learning algorithms crucially depend on non-linear mathematical functions such as division (for normalization), exponentiation (for softmax and sigmoid), tanh (as an activation function), logarithm (for cross-entropy loss), and square root (for back-propagation of normalization layers). However, when machine learning is performed over secure computation, these protocols incur a large communication overhead and high round complexity. In this work, we propose new multi-party...

2022/815 (PDF) Last updated: 2022-06-23
More Efficient Dishonest Majority Secure Computation over $\mathbb{Z}_{2^k}$ via Galois Rings
Daniel Escudero, Chaoping Xing, Chen Yuan
Cryptographic protocols

In this work we present a novel actively secure multiparty computation protocol in the dishonest majority setting, where the computation domain is a ring of the type $\mathbb{Z}_{2^k}$. Instead of considering an "extension ring" of the form $\mathbb{Z}_{2^{k+\kappa}}$ as in SPD$\mathbb{Z}_{2^k}$ (Cramer et al, CRYPTO 2018) and its derivatives, we make use of an actual ring extension, or more precisely, a Galois ring extension $\mathbb{Z}_{p^k}[\mathtt{X}]/(h(\mathtt{X}))$ of large enough...

2022/813 (PDF) Last updated: 2023-01-19
Quadratic Multiparty Randomized Encodings Beyond Honest Majority and Their Applications
Benny Applebaum, Yuval Ishai, Or Karni, Arpita Patra
Foundations

Multiparty randomized encodings (Applebaum, Brakerski, and Tsabary, SICOMP 2021) reduce the task of securely computing a complicated multiparty functionality $f$ to the task of securely computing a simpler functionality $g$. The reduction is non-interactive and preserves information-theoretic security against a passive (semi-honest) adversary, also referred to as privacy. The special case of a degree-2 encoding $g$ (2MPRE) has recently found several applications to secure multiparty...

2022/800 (PDF) Last updated: 2022-07-07
BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators
Sameer Wagh
Cryptographic protocols

Recent advances in function secret sharing (FSS) have led to new possibilities in multi-party computation in the pre-processing model. Silent Pseudorandom Correlation Generators (Crypto '19, CCS '19, CCS '19, CCS '20) have demonstrated the ability to generate large quantities of pre-processing material such as oblivious transfers and Beaver triples through a non-interactive offline phase (with an initial set-up). However, there has been limited protocols for pre-processing material such as...

2022/750 (PDF) Last updated: 2022-06-13
The Ideal Functionalities for Private Set Union, Revisited
Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Dawu Gu
Cryptographic protocols

A Private Set Union (PSU) protocol allows parties, each holding an input set, to jointly compute the union of the sets without revealing anything else. In the literature, when we design scalable two-party PSU protocols, we follow the so-called ``split-execute-assemble'' paradigm, and also use Oblivious Transfer as a building block. Recently, Kolesnikov et al. (ASIACRYPT 2019) pointed out that security issues could be introduced when we design PSU protocols following the...

2022/690 (PDF) Last updated: 2022-05-31
Authentication in the Bounded Storage Model
Yevgeniy Dodis, Willy Quach, Daniel Wichs
Foundations

We consider the streaming variant of the Bounded Storage Model (BSM), where the honest parties can stream large amounts of data to each other, while only maintaining a small memory of size $n$. The adversary also operates as a streaming algorithm, but has a much larger memory size $m \gg n$. The goal is to construct unconditionally secure cryptographic schemes in the BSM, and prior works did so for symmetric-key encryption, key agreement, oblivious transfer and multiparty computation. In...

2022/649 (PDF) Last updated: 2022-05-25
IBE with Incompressible Master Secret and Small Identity Secrets
Nico Döttling, Sanjam Garg, Sruthi Sekar, Mingyuan Wang
Public-key cryptography

Side-stepping the protection provided by cryptography, exfiltration attacks are becoming a considerable real-world threat. With the goal of mitigating the exfiltration of cryptographic keys, big-key cryptosystems have been developed over the past few years. These systems come with very large secret keys which are thus hard to exfiltrate. Typically, in such systems, the setup time must be large as it generates the large secret key. However, subsequently, the encryption and decryption...

2022/495 (PDF) Last updated: 2022-04-23
Maliciously Circuit-Private FHE from Information-Theoretic Principles
Nico Döttling, Jesko Dujmovic
Public-key cryptography

Fully homomorphic encryption (FHE) allows arbitrary computations on encrypted data. The standard security requirement, IND-CPA security, ensures that the encrypted data remain private. However, it does not guarantee privacy for the computation performed on the encrypted data. Statistical circuit privacy offers a strong privacy guarantee for the computation process, namely that a homomorphically evaluated ciphertext does not leak any information on how the result of the computation was...

2022/417 (PDF) Last updated: 2022-04-06
Efficient, Actively Secure MPC with a Dishonest Majority: a Survey
Emmanuela Orsini
Cryptographic protocols

The last ten years have seen a tremendous growth in the interest and practicality of secure multiparty computation (MPC) and its possible applications. Secure MPC is indeed a very hot research topic and recent advances in the eld have already been translated into commercial products world-wide. A major pillar in this advance has been in the case of active security with a dishonest majority, mainly due to the SPDZ-line of work protocols. This survey gives an overview of these protocols, with...

2022/415 (PDF) Last updated: 2022-04-04
Efficient and Tight Oblivious Transfer from PKE with Tight Multi-User Security
Saikrishna Badrinarayanan, Daniel Masny, Pratyay Mukherjee
Public-key cryptography

We propose an efficient oblivious transfer in the random oracle model based on public key encryption with pseudorandom public keys. The construction is as efficient as the state of art though it has a significant advantage. It has a tight security reduction to the multi-user security of the underlying public key encryption. In previous constructions, the security reduction has a multiplicative loss that amounts in at least the amount of adversarial random oracle queries. When considering...

2022/386 (PDF) Last updated: 2022-03-28
Secure Two-party Computation Approach for NTRUEncrypt
Lin You, Yan Wang, Liang Li, Gengran Hu
Cryptographic protocols

Secure multi-party computation can provide a solution for privacy protection and ensure the correctness of the final calculation results. Lattice-based algorithms are considered to be one of the most promising post-quantum cryptographic algorithms due to a better balance among security, key sizes and calculation speeds. The NTRUEncrypt is a lattice-based anti-quantum attack cryptographic algorithm. Since there haven't been much candidate post-quantum cryptographic algorithms for secure...

2022/363 (PDF) Last updated: 2022-06-14
An Algebraic Framework for Silent Preprocessing with Trustless Setup and Active Security
Damiano Abram, Ivan Damgård, Claudio Orlandi, Peter Scholl
Cryptographic protocols

Recently, number-theoretic assumptions including DDH, DCR and QR have been used to build powerful tools for secure computation, in the form of homomorphic secret-sharing (HSS), which leads to secure two-party computation protocols with succinct communication, and pseudorandom correlation functions (PCFs), which allow non-interactive generation of a large quantity of correlated randomness. In this work, we present a group-theoretic framework for these classes of constructions, which unifies...

2022/358 (PDF) Last updated: 2022-12-02
Linear Private Set Union from Multi-Query Reverse Private Membership Test
Cong Zhang, Yu Chen, Weiran Liu, Min Zhang, Dongdai Lin
Cryptographic protocols

Private set union (PSU) protocol enables two parties, each holding a set, to compute the union of their sets without revealing anything else to either party. So far, there are two known approaches for constructing PSU protocols. The first mainly depends on additively homomorphic encryption (AHE), which is generally inefficient since it needs to perform a non-constant number of homomorphic computations on each item. The second is mainly based on oblivious transfer and symmetric-key...

2022/318 (PDF) Last updated: 2022-10-05
Efficient Online-friendly Two-Party ECDSA Signature
Haiyang Xue, Man Ho Au, Xiang Xie, Tsz Hon Yuen, Handong Cui
Cryptographic protocols

Two-party ECDSA signatures have received much attention due to their widespread deployment in cryptocurrencies. Depending on whether or not the message is required, we could divide two-party signing into two different phases, namely, offline and online. Ideally, the online phase should be made as lightweight as possible. At the same time, the cost of the offline phase should remain similar to that of a normal signature generation. However, the existing two-party protocols of ECDSA are not...

2022/316 (PDF) Last updated: 2022-03-08
Bounded Functional Encryption for Turing Machines: Adaptive Security from General Assumptions
Shweta Agrawal, Fuyuki Kitagawa, Anuja Modi, Ryo Nishimaki, Shota Yamada, Takashi Yamakawa
Public-key cryptography

The recent work of Agrawal et al., [Crypto '21] and Goyal et al. [Eurocrypt '22] concurrently introduced the notion of dynamic bounded collusion security for functional encryption (FE) and showed a construction satisfying the notion from identity based encryption (IBE). Agrawal et al., [Crypto '21] further extended it to FE for Turing machines in non-adaptive simulation setting from the sub-exponential learining with errors assumption (LWE). Concurrently, the work of Goyal et al. [Asiacrypt...

2022/314 (PDF) Last updated: 2022-03-14
Batch-OT with Optimal Rate
Zvika Brakerski, Pedro Branco, Nico Döttling, Sihang Pu
Cryptographic protocols

We show that it is possible to perform $n$ independent copies of $1$-out-of-$2$ oblivious transfer in two messages, where the communication complexity of the receiver and sender (each) is $n(1+o(1))$ for sufficiently large $n$. Note that this matches the information-theoretic lower bound. Prior to this work, this was only achievable by using the heavy machinery of rate-$1$ fully homomorphic encryption (Rate-$1$ FHE, Brakerski et al., TCC 2019). To achieve rate-$1$ both on the receiver's and...

2022/192 (PDF) Last updated: 2022-02-20
SoftSpokenOT: Communication--Computation Tradeoffs in OT Extension
Lawrence Roy
Cryptographic protocols

Given a small number of base oblivious transfers (OTs), how does one generate a large number of extended OTs as efficiently as possible? The answer has long been the seminal work of IKNP (Ishai et al., Crypto 2003) and the family of protocols it inspired, which only use Minicrypt assumptions. Recently, Boyle et al. (Crypto 2019) proposed the Silent-OT technique that improves on IKNP, but at the cost of a much stronger, non-Minicrypt assumption: the learning parity with noise (LPN)...

2022/185 (PDF) Last updated: 2022-06-14
Statistically Sender-Private OT from LPN and Derandomization
Nir Bitansky, Sapir Freizeit
Cryptographic protocols

We construct a two-message oblivious transfer protocol with statistical sender privacy (SSP OT) based on the Learning Parity with Noise (LPN) Assumption and a standard Nisan-Wigderson style derandomization assumption. Beyond being of interest on their own, SSP OT protocols have proven to be a powerful tool toward minimizing the round complexity in a wide array of cryptographic applications from proofs systems, through secure computation protocols, to hard problems in statistical zero...

2022/170 (PDF) Last updated: 2022-06-16
gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head, with Application to Proofs of Assets in Cryptocurrencies
Foteini Baldimtsi, Panagiotis Chatzigiannis, S. Dov Gordon, Phi Hung Le, Daniel McVicker
Applications

We present gOTzilla, a protocol for interactive zero-knowledge proofs for very large disjunctive statements of the following format: given publicly known circuit $C$, and set of values $Y = \{y_1, \ldots, y_n\}$, prove knowledge of a witness $x$ such that $C(x) = y_1 \lor C(x) = y_2 \lor \cdots \lor C(x) = y_n$. These type of statements are extremely important for the proof of assets (PoA) problem in cryptocurrencies where a prover wants to prove the knowledge of a secret key $sk$ that...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.