Mehmet Turan received his Diploma Degree from the Informationtechnology and Electronics engineering departmentof RWTH Aachen, Germany in 2012. He was a research scientistat UCLA (University of California Los Angeles) between 2013-2014 and a research scientist at the Max Planck Institute forIntelligent Systems between 2014-present. He is currentlyenrolled as a PhD Student at the ETH Zurich, Switzerland. He isalso afliated with Max Planck-ETH Center for Learning Systems,the first joint research center of ETH Zurich and the Max PlanckSociety. His research interests include SLAM (simultaneous localization and mapping) techniques for milli-scale medical robots and deep learning techniques for medical robot localization and mapping. He received DAAD fellowship between years 2005-2011 and Max Planck Fellowship between 2014-present. He has also received MPI-ETH Center fellowship between 2016-present.
Despite significant progress achieved in the last decade to convert passive capsule endoscopes to... more Despite significant progress achieved in the last decade to convert passive capsule endoscopes to actively controllable robots, robotic capsule endoscopy still has some challenges. In particular, a fully dense three-dimensional (3D) map reconstruction of the explored organ remains an unsolved problem. Such a dense map would help doctors detect the locations and sizes of the diseased areas more reliably, resulting in more accurate diagnoses. In this study, we propose a comprehensive medical 3D reconstruction method for endoscopic capsule robots, which is built in a modular fashion including preprocessing, keyframe selection, sparse-then-dense alignment-based pose estimation, bundle fusion, and shading-based 3D reconstruction. A detailed quantitative analysis is performed using a non-rigid esophagus gastroduodenoscopy simulator, four different endoscopic cameras, a magnetically activated soft capsule robot, a sub-millimeter precise optical motion tracker, and a fine-scale 3D optical scanner, whereas qualitative ex-vivo experiments are performed on a porcine pig stomach. To the best of our knowledge, this study is the first complete endoscopic 3D map reconstruction approach containing all of the necessary functionalities for a therapeutically relevant 3D map reconstruction.
Ingestible wireless capsule endoscopy is an emerging minimally invasive diagnostic technology for... more Ingestible wireless capsule endoscopy is an emerging minimally invasive diagnostic technology for inspection of the GI tract and diagnosis of a wide range of diseases and pathologies. Medical device companies and many research groups have recently made substantial progresses in converting passive capsule endoscopes to active capsule robots, enabling more accurate, precise, and intuitive detection of the location and size of the diseased areas. Since a reliable real time pose estimation functionality is crucial for actively controlled endoscopic capsule robots, in this study, we propose a monocular visual odometry (VO) method for endoscopic capsule robot operations. Our method lies on the application of the deep recurrent convolutional neural networks (RCNNs) for the visual odometry task, where convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are used for the feature extraction and inference of dynamics across the frames, respectively. Detailed analyses and evaluations made on a real pig stomach dataset proves that our system achieves high translational and rotational accuracies for different types of endoscopic capsule robot trajectories.
Since the development of capsule endoscopy technology, medical device companies and research grou... more Since the development of capsule endoscopy technology, medical device companies and research groups have made significant progress to turn passive capsule endoscopes into robotic active capsule endoscopes. However, the use of robotic capsules in endoscopy still has some challenges. One such challenge is the precise localization of the actively controlled robot in real-time. In this paper, we propose a non-rigid map fusion based direct simultaneous localization and mapping method for endoscopic capsule robots. The proposed method achieves high accuracy for extensive evaluations of pose estimation and map reconstruction performed on a non-rigid, realistic surgical EsophagoGastroDuodenoscopy Simulator and outperforms state-of-the art methods. Keywords Endoscopic capsule robot · Dense direct medical SLAM · Non-rigid frame-to-model fusion
A reliable, real time localization functionality is crutial for actively controlled capsule endos... more A reliable, real time localization functionality is crutial for actively controlled capsule endoscopy robots, which are an emerging , minimally invasive diagnostic and therapeutic technology for the gastrointestinal (GI) tract. In this study, we extend the success of deep learning approaches from various research fields to the problem of sensor fusion for endoscopic capsule robots. We propose a multi-sensor fusion based localization approach which combines endoscopic camera information and magnetic sensor based localization information. The results performed on real pig stomach dataset show that our method achieves sub-millimeter precision for both translational and rotational movements.
There is an increasing demand for flexible, skin-attachable, and wearable strain sensors due to t... more There is an increasing demand for flexible, skin-attachable, and wearable strain sensors due to their various potential applications. However, achieving strain sensors with both high sensitivity and high stretchability is still a grand challenge. Here, we propose highly sensitive and stretchable strain sensors based on the reversible microcrack formation in composite thin films. Controllable parallel microcracks are generated in graphite thin films coated on elastomer films. Sensors made of graphite thin films with short microcracks possess high gauge factors (maximum value of 522.6) and stretchability (ε≥50%) whereas long microcracks based sensors show ultrahigh sensitivity (maximum value of 11,344), but with limited stretchability (ε≤50%). We demonstrate the high performance strain sensing of our sensors in both small and large strain sensing applications such as human physiological activity recognition, human body large motion capturing, vibration detection, pressure sensing, and...
Untethered robots miniaturized to the length scale of millimeter and below attract growing attent... more Untethered robots miniaturized to the length scale of millimeter and below attract growing attention for the prospect of transforming many aspects of health care and bioengineering. As the robot size goes down to the order of a single cell, previously inaccessible body sites would become available for high-resolution in situ and in vivo manipulations. This unprecedented direct access would enable an extensive range of minimally invasive medical operations. Here, we provide a comprehensive review of the current advances in biome dical untethered mobile milli/microrobots. We put a special emphasis on the potential impacts of biomedical microrobots in the near future. Finally, we discuss the existing challenges and emerging concepts associated with designing such a miniaturized robot for operation inside a biological environment for biomedical applications.
A reliable, real-time simultaneous localization and mapping (SLAM) method is crucial for the navi... more A reliable, real-time simultaneous localization and mapping (SLAM) method is crucial for the navigation of actively controlled capsule endoscopy robots. These robots are an emerging, minimally invasive diagnostic and therapeutic technology for use in the gastrointestinal (GI) tract. In this study, we propose a dense, non-rigidly deformable, and real-time map fusion approach for actively controlled endoscopic capsule robot applications. The method combines magnetic and vision based localization, and makes use of frame-to-model fusion and model-to-model loop closure. The performance of the method is demonstrated using an ex-vivo porcine stomach model. Across four trajectories of varying speed and complexity, and across three cameras, the root mean square local-ization errors range from 0.42 to 1.92 cm, and the root mean square surface reconstruction errors range from 1.23 to 2.39 cm.
Despite significant progress achieved in the last decade to convert passive capsule endoscopes to... more Despite significant progress achieved in the last decade to convert passive capsule endoscopes to actively controllable robots, robotic capsule endoscopy still has some challenges. In particular, a fully dense three-dimensional (3D) map reconstruction of the explored organ remains an unsolved problem. Such a dense map would help doctors detect the locations and sizes of the diseased areas more reliably, resulting in more accurate diagnoses. In this study, we propose a comprehensive medical 3D reconstruction method for endoscopic capsule robots, which is built in a modular fashion including preprocessing, keyframe selection, sparse-then-dense alignment-based pose estimation, bundle fusion, and shading-based 3D reconstruction. A detailed quantitative analysis is performed using a non-rigid esophagus gastroduodenoscopy simulator, four different endoscopic cameras, a magnetically activated soft capsule robot, a sub-millimeter precise optical motion tracker, and a fine-scale 3D optical scanner, whereas qualitative ex-vivo experiments are performed on a porcine pig stomach. To the best of our knowledge, this study is the first complete endoscopic 3D map reconstruction approach containing all of the necessary functionalities for a therapeutically relevant 3D map reconstruction.
Ingestible wireless capsule endoscopy is an emerging minimally invasive diagnostic technology for... more Ingestible wireless capsule endoscopy is an emerging minimally invasive diagnostic technology for inspection of the GI tract and diagnosis of a wide range of diseases and pathologies. Medical device companies and many research groups have recently made substantial progresses in converting passive capsule endoscopes to active capsule robots, enabling more accurate, precise, and intuitive detection of the location and size of the diseased areas. Since a reliable real time pose estimation functionality is crucial for actively controlled endoscopic capsule robots, in this study, we propose a monocular visual odometry (VO) method for endoscopic capsule robot operations. Our method lies on the application of the deep recurrent convolutional neural networks (RCNNs) for the visual odometry task, where convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are used for the feature extraction and inference of dynamics across the frames, respectively. Detailed analyses and evaluations made on a real pig stomach dataset proves that our system achieves high translational and rotational accuracies for different types of endoscopic capsule robot trajectories.
Since the development of capsule endoscopy technology, medical device companies and research grou... more Since the development of capsule endoscopy technology, medical device companies and research groups have made significant progress to turn passive capsule endoscopes into robotic active capsule endoscopes. However, the use of robotic capsules in endoscopy still has some challenges. One such challenge is the precise localization of the actively controlled robot in real-time. In this paper, we propose a non-rigid map fusion based direct simultaneous localization and mapping method for endoscopic capsule robots. The proposed method achieves high accuracy for extensive evaluations of pose estimation and map reconstruction performed on a non-rigid, realistic surgical EsophagoGastroDuodenoscopy Simulator and outperforms state-of-the art methods. Keywords Endoscopic capsule robot · Dense direct medical SLAM · Non-rigid frame-to-model fusion
A reliable, real time localization functionality is crutial for actively controlled capsule endos... more A reliable, real time localization functionality is crutial for actively controlled capsule endoscopy robots, which are an emerging , minimally invasive diagnostic and therapeutic technology for the gastrointestinal (GI) tract. In this study, we extend the success of deep learning approaches from various research fields to the problem of sensor fusion for endoscopic capsule robots. We propose a multi-sensor fusion based localization approach which combines endoscopic camera information and magnetic sensor based localization information. The results performed on real pig stomach dataset show that our method achieves sub-millimeter precision for both translational and rotational movements.
There is an increasing demand for flexible, skin-attachable, and wearable strain sensors due to t... more There is an increasing demand for flexible, skin-attachable, and wearable strain sensors due to their various potential applications. However, achieving strain sensors with both high sensitivity and high stretchability is still a grand challenge. Here, we propose highly sensitive and stretchable strain sensors based on the reversible microcrack formation in composite thin films. Controllable parallel microcracks are generated in graphite thin films coated on elastomer films. Sensors made of graphite thin films with short microcracks possess high gauge factors (maximum value of 522.6) and stretchability (ε≥50%) whereas long microcracks based sensors show ultrahigh sensitivity (maximum value of 11,344), but with limited stretchability (ε≤50%). We demonstrate the high performance strain sensing of our sensors in both small and large strain sensing applications such as human physiological activity recognition, human body large motion capturing, vibration detection, pressure sensing, and...
Untethered robots miniaturized to the length scale of millimeter and below attract growing attent... more Untethered robots miniaturized to the length scale of millimeter and below attract growing attention for the prospect of transforming many aspects of health care and bioengineering. As the robot size goes down to the order of a single cell, previously inaccessible body sites would become available for high-resolution in situ and in vivo manipulations. This unprecedented direct access would enable an extensive range of minimally invasive medical operations. Here, we provide a comprehensive review of the current advances in biome dical untethered mobile milli/microrobots. We put a special emphasis on the potential impacts of biomedical microrobots in the near future. Finally, we discuss the existing challenges and emerging concepts associated with designing such a miniaturized robot for operation inside a biological environment for biomedical applications.
A reliable, real-time simultaneous localization and mapping (SLAM) method is crucial for the navi... more A reliable, real-time simultaneous localization and mapping (SLAM) method is crucial for the navigation of actively controlled capsule endoscopy robots. These robots are an emerging, minimally invasive diagnostic and therapeutic technology for use in the gastrointestinal (GI) tract. In this study, we propose a dense, non-rigidly deformable, and real-time map fusion approach for actively controlled endoscopic capsule robot applications. The method combines magnetic and vision based localization, and makes use of frame-to-model fusion and model-to-model loop closure. The performance of the method is demonstrated using an ex-vivo porcine stomach model. Across four trajectories of varying speed and complexity, and across three cameras, the root mean square local-ization errors range from 0.42 to 1.92 cm, and the root mean square surface reconstruction errors range from 1.23 to 2.39 cm.
Uploads
Papers by Mehmet Turan