Eksponentiaalinen hajoaminen

Wikipediasta
Siirry navigaatioon Siirry hakuun
Eksponentiaalinen hajoaminen. Kuvaajasta nähdään, että hajoaminen on sitä nopeampaa, mitä suurempi on hajoamisvakio. Kuvaajaan on piirretty eksponentiaalinen hajoaminen hajoamisvakion arvoilla 25, 5, 1, 1/5, ja 1/25 x:n arvoilla nollasta viiteen.

Suure pienenee tai vähenee eksponentiaalisesti, jos sen arvo pienenee nopeudella, joka on suoraan verrannollinen suureen senhetkiseen arvoon.[1] Eksponentiaalisesti vähenevä suure N toteuttaa siis hajoamislaiksi kutsutun differentiaaliyhtälön:

missä λ on positiivinen luku. Tätä verrannollisuuskerrointa kutsutaan myös hajoamisvakioksi.

Eksponentiaalinen väheneminen on luonnon ilmiöissä yleinen vähenemistahti. Yhtälöä kutsutaankin hajoamislaiksi muun muassa siksi, että sillä on yhteys radio­aktiiviseen hajoamiseen ja kemiallisiin hajoamisreaktioihin.[2]

Differentiaaliyhtälön ratkaisu[1]

[muokkaa | muokkaa wikitekstiä]

Differentiaaliyhtälö voidaan ratkaista muokkaamalla se ensin muotoon

ja integroimalla yhtälön molemmat puolet. Integrointirajat vasemmalla puolella ovat N0 eli N:n arvo hetkellä t=0 ja Nt eli arvo hetkellä t. Vastaavasti oikealla puolella integrointi tehdään välillä 0 ... t.

josta saadaan lopulta ratkaistua Nt:

Edellä olevaa yhtälöä kutsutaan hajoamislain integraalimuodoksi.

Hajoamisnopeutta kuvaavat aikasuureet

[muokkaa | muokkaa wikitekstiä]
Puoliintumisaika ja keskimääräinen elinaika.

Puoliintumisaika

[muokkaa | muokkaa wikitekstiä]

Intuitiivisesti ymmärrettävä suure hajoamisen nopeudelle on puoliintumisaika.[3][4] Puoliintumisaika on se aika, jossa suure N pienenee puoleen alkuperäisestä arvostaan. Puoliintumisaika T voidaan helposti johtaa hajoamislain integraalimuodosta asettamalla , eli ajanhetkellä t=T on N:n alkuperäinen arvo laskenut puoleen alkuperäisestä. Tällöin saadaan puoliintumisajan arvoksi

Hajoamislaki saa tämän kaavan avulla helpon muodon (sijoittamalla hajoamislain integraalimuotoon):

Tästä yhtälöstä nähdään, että ensimmäisen puoliintumisajan lopussa () suure on pienentynyt puoleen alkuperäisestä arvostaan, kahden puoliintumisajan kuluttua () neljäsosaan jne.

Keskimääräinen elinaika

[muokkaa | muokkaa wikitekstiä]

Toinen, matemaattisesti yksinkertaisempi mutta intuitiivisesti vaikeammin ymmärrettävä hajoamisnopeutta kuvaava suure on keskimääräinen elinaika . Keskimääräinen elinaika on se aika, jossa suure pienenee 1/e:een osaan alkuperäisestä. Vastaavalla tavalla kuin puoliintumisajan yhteydessä, saadaan keskimääräisen elinajan lausekkeeksi:

Esimerkiksi radioaktiivisessa hajoamisessa keskimääräinen elinaika kuvaa keskimääräistä aikaa, jonka ydin ehtii olla alun perin N0 ydintä sisältäneessä joukossa ennen hajoamistaan. Johto keskimääräiselle elinajalle on esitetty englanninkielisessä artikkelissa.

Esimerkiksi polonium-210:n keskimääräinen elinaika on 200 vuorokautta, mutta puoliintumisaika vain 138 vuorokautta.

Useita rinnakkaisia hajoamisia

[muokkaa | muokkaa wikitekstiä]

Jos hajoaminen tapahtuu useamman rinnakkaisen prosessin kautta ja kullakin on oma keskimääräinen elinaikansa, ollaan yleensä kiinnostuneita vain kokonaisuudessaan hajoamisen keskimääräisestä elinajasta. Kokonaishajoamisnopeudelle voidaan kirjoittaa yhtälö:

Ratkaisu saadaan, kun kirjoitetaan hajoamisvakioiden summa uutena hajoamisvakiona eli asettamalla . Tällöin

Nyt saadaan yhtälö

, josta ratkaisemalla saadaan

Tämä voidaan yleistää koskemaan n kappaletta prosesseja muodossa

  • Kinetiikan alkeisreaktioissa lähtöaineiden konsentraatiot noudattavat eksponentiaalista hajoamista.
  • Korkealla ilmakehässä, ilmanpaine vähenee eksponentiaalisesti korkeuden funktiona.[5]

Aiheesta muualla

[muokkaa | muokkaa wikitekstiä]
  1. a b Analysis - Ordinary Diff. Eqns, Solutions, Theory | Britannica www.britannica.com. Viitattu 27.5.2024. (englanniksi)
  2. Radioactivity | Definition, Types, Applications, & Facts | Britannica www.britannica.com. 9.5.2024. Viitattu 27.5.2024. (englanniksi)
  3. Definition of HALF-LIFE www.merriam-webster.com. 25.5.2024. Viitattu 27.5.2024. (englanniksi)
  4. Half-life | Definition & Facts | Britannica www.britannica.com. Viitattu 27.5.2024. (englanniksi)
  5. Atmospheric pressure | Definition, Measurement, & Variations | Britannica www.britannica.com. Viitattu 27.5.2024. (englanniksi)