Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Aller au contenu

Constante gravitationnelle de Gauss

Un article de Wikipédia, l'encyclopédie libre.
En 1801, la découverte de Cérès démontre l'utilité de la constante gravitationnelle de Gauss.

La constante gravitationnelle de Gauss est un paramètre utilisé en astronomie pour les calculs de mécanique céleste effectués en unités du système astronomique (jour, masse solaire, unité astronomique) plutôt qu'en celles du Système international d'unités (seconde, kilogramme, mètre)[1]. Ce paramètre n'est constant que pour un système donné : dans un autre système planétaire, satellite naturel ou stellaire, cette constante aurait une valeur différente. En l'absence de précision, c'est de la constante associée au Système solaire que l’on parle.

Mise en évidence

[modifier | modifier le code]

Soit un objet du Système solaire de masse en révolution autour du Soleil de masse égale à une masse solaire.

Considérons que est très inférieur à de sorte de soit négligeable devant .

L'objet de masse décrit une orbite elliptique de demi-grand axe .

Le moyen mouvement de l'objet de masse est donné par : , avec .

Considérons que et que .[Quoi ?]

L'éponyme de la constante de Gauss[2],[N 1] est Carl Friedrich Gauss (-), qui l'a proposée en [4] dans sa Theoria motus corporum coelestium in sectionibus conicis solem ambientum[5],[6] (« Théorie du mouvement des corps célestes parcourant des sections coniques autour du Soleil »[7]). Gauss semble l'avoir utilisée dès afin de prédire l'orbite de Cérès, découverte le par Giuseppe Piazzi et que celui-ci avait perdue de vue[8],[9]. Avant Gauss, Isaac Newton avait lui-même utilisé la constante[10].

En , Simon Newcomb (-) publie ses Tables of the Sun (« Tables du Soleil ») dans lesquelles il adopte la notation et les valeurs de la constante que Gauss avait lui-même proposées[11],[12].

En à Stockholm, la 6e assemblée générale de l'Union astronomique internationale (UAI) adopte à l'unanimité[13] une résolution présentée par la commission des éphémérides[14] et fixant la constante de Gauss à k = 0,017 202 098 95 radian par jour solaire moyen pour .0[15].

En à Grenoble, la 16e assemble générale de l'UAI adopte une recommandation en vertu de laquelle la constante de Gauss devient la[N 2] « constante de définition »[16] du système astronomique d'unités. Sa valeur reste celle adoptée en [17] et sert à définir l'unité astronomique de longueur[18].

En à Pékin, la 28e assemblée générale de l'UAI adapte une résolution qui redéfinit l'unité astronomique de longueur comme une « unité conventionnelle de longueur égale à 149 597 870 700 m exactement »[19] ; cessant ainsi d'être une « constante auxiliaire de définition » servant à définir l'unité astronomique de longueur, la constante de Gauss est supprimée du système des constantes astronomiques[19].

Dérivation par Gauss

[modifier | modifier le code]

Notation et valeur

[modifier | modifier le code]

La constante de Gauss est couramment notée , correspondant à la lettre K minuscule de l'alphabet latin, initiale de l'allemand Konstante (constante).

Depuis , la constante de Gauss est donnée par la relation[20] :

,

[20] :

et :

Les valeurs[Quoi ?] recommandées[réf. nécessaire] du paramètre de masse solaires sont :

Dimension et unité

[modifier | modifier le code]

La dimension du carré de la constante de Gauss est celle de la constante de gravitation :

,

et sont la dimension du carré de la constante de Gauss et celle de la constante de gravitation.

La dimension de la constante de Gauss est celle de la vitesse angulaire ou pulsation :

est la dimension d'une vitesse et la dimension d'un angle plan, grandeur adimensionnelle.

Bien que, dans le Système international d'unités, l'unité dérivée pour la vitesse angulaire, ou pulsation, soit le radian par seconde, la constante de Gauss est habituellement exprimée en radian par jour.

Dans le système astronomique d'unités, la constante associée au Système solaire vaut :

avec :

Si, à la place du jour solaire moyen, on utilise l'année sidérale comme unité de temps, la valeur de est alors très proche de .

Cette valeur de 0,017 202 098 95, calculée par Gauss[7], est encore en usage.

Déterminations contemporaines

[modifier | modifier le code]

Simon Newcomb la recalcule pour son Newcomb's Tables of the Sun (en).

Interprétation

[modifier | modifier le code]

La constante de Gauss représente la vitesse angulaire moyenne, en radian par jour, à laquelle une particule de masse infinitésimale se déplacerait, autour du Soleil, sur une orbite newtonienne circulaire non perturbée de rayon approximativement égal à la distance moyenne entre le Soleil et la Terre[21].

Applications

[modifier | modifier le code]

Année gaussienne

[modifier | modifier le code]

Une année gaussienne est l'année sidérale d'une planète hypothétique d'une masse négligeable par rapport à celle du Soleil, dont l'orbite ne serait pas perturbée par les autres planètes et qui serait gouvernée par la constante gravitationnelle de Gauss (dans le cadre de la troisième loi de Kepler). De ces contraintes, on en déduit que l'année gaussienne est égale à 365,256 898 3 jours (soit 365 d 6 h 9 min 56 s).

Définition de la seconde

[modifier | modifier le code]

De 1956 à 1967, la constante gravitationnelle de Gauss est à la base de la définition internationale de la seconde. Elle fait partie du système astronomique d'unités depuis 1952.

Notes et références

[modifier | modifier le code]
  1. En anglais, Gauss's constant[3] (« constante de Gauss ») ou Gaussian constant[4] (« constante gaussienne »).
  2. La vitesse de la lumière c n'est alors qu'une « constante primaire »[16].

Références

[modifier | modifier le code]
  1. (en) « Software, Robotics, and Simulation Division », sur NASA (consulté le ).
  2. Berthier, Descamps et Mignard 2021, p. 230.
  3. Harper 2011, p. 310, n. 31.
  4. a et b McCarthy et Seidelmann 2018, p. 41.
  5. MacDougal 2012, p. 258.
  6. Gauss 1809.
  7. a et b (fr) Théorie du mouvement…, trad. et notes par Edmond Dubois, éd. Arthus Bertrand, 1864 ; reprint, Jacques Gabay, 2008, (ISBN 2-87647-327-5) ; Gallica texte sur internet.
  8. Lang 2013, p. 78.
  9. Forbes 1971.
  10. Burša et Pěč 1993, p. 43.
  11. Simon, Chapront-Touzé, Morando et Thuillot 1997, p. 38.
  12. Newcomb 1898, p. 10.
  13. UAI 1938, p. 357.
  14. UAI 1938, p. 20.
  15. UAI 1938, p. 336.
  16. a et b UAI 1976, p. 58.
  17. UAI 1976, p. 61.
  18. UAI 1976, p. 58 et 61.
  19. a et b UAI 2012, p. 44.
  20. a b et c Simon et Francou 2016, p. 7.
  21. BIPM 2006, p. 37.

Bibliographie

[modifier | modifier le code]

Document utilisé pour la rédaction de l’article : document utilisé comme source pour la rédaction de cet article.

Publication de Carl Friedrich Gauss

[modifier | modifier le code]

Publication de Simon Newcomb

[modifier | modifier le code]

Publications de l'Union astronomique internationale

[modifier | modifier le code]

Publications du Bureau international des poids et mesures

[modifier | modifier le code]

Publications du Bureau des longitudes

[modifier | modifier le code]

Publications de l'Institut de mécanique céleste et de calcul des éphémérides

[modifier | modifier le code]

Articles connexes

[modifier | modifier le code]

Liens externes

[modifier | modifier le code]