Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Public-Key Cryptosystems are prone to wide range of cryptanalyses due to its property of having key pairs one of them is public. Therefore, the recommended length of these keys is extremely large (e.g. in RSA and D-H the key is at least... more
Public-Key Cryptosystems are prone to wide range of cryptanalyses due to its property of having key pairs one of them is public. Therefore, the recommended length of these keys is extremely large (e.g. in RSA and D-H the key is at least 2048 bits long) and this leads the computation of such cryptosystems to be slower than the secret-key cryptosystems (i.e. AES and AES-family). Since, the key operation in such systems is the modular multiplication; in this research a novel design for the modular multiplication based on the Montgomery Multiplication, the Residue Number Systems for moduli of any form, and the Signed-Digit Representation is proposed. The proposed design outperforms the current designs in the literature in terms of delay with at least 28% faster for the key of 2048 bits long. Up to our knowledge, this design is the first design that utilizes Signed-Digit Representation with the Residue Number System for moduli of any form.