Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
summaryrefslogtreecommitdiff
AgeCommit message (Collapse)Author
2025-05-22Revert "Don't lock partitions pruned by initial pruning"Amit Langote
As pointed out by Tom Lane, the patch introduced fragile and invasive design around plan invalidation handling when locking of prunable partitions was deferred from plancache.c to the executor. In particular, it violated assumptions about CachedPlan immutability and altered executor APIs in ways that are difficult to justify given the added complexity and overhead. This also removes the firstResultRels field added to PlannedStmt in commit 28317de72, which was intended to support deferred locking of certain ModifyTable result relations. Reported-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://postgr.es/m/605328.1747710381@sss.pgh.pa.us
2025-03-28Add support for not-null constraints on virtual generated columnsPeter Eisentraut
This was left out of the original patch for virtual generated columns (commit 83ea6c54025). This just involves a bit of extra work in the executor to expand the generation expressions and run a "IS NOT NULL" test against them. There is also a bit of work to make sure that not-null constraints are checked during a table rewrite. Author: jian he <jian.universality@gmail.com> Reviewed-by: Xuneng Zhou <xunengzhou@gmail.com> Reviewed-by: Navneet Kumar <thanit3111@gmail.com> Reviewed-by: Álvaro Herrera <alvherre@alvh.no-ip.org> Discussion: https://postgr.es/m/CACJufxHArQysbDkWFmvK+D1TPHQWWTxWN15cMuUaTYX3xhQXgg@mail.gmail.com
2025-03-28Rename a node field for clarityPeter Eisentraut
Rename ResultRelInfo.ri_ConstraintExprs to ri_CheckConstraintExprs. This reflects its specific purpose better and avoids confusion with adjacent fields with similar but distinct purposes. Discussion: https://postgr.es/m/CACJufxHArQysbDkWFmvK+D1TPHQWWTxWN15cMuUaTYX3xhQXgg@mail.gmail.com
2025-03-25Remove 'additional' pointer from TupleHashEntryData.Jeff Davis
Reduces memory required for hash aggregation by avoiding an allocation and a pointer in the TupleHashEntryData structure. That structure is used for all buckets, whether occupied or not, so the savings is substantial. Discussion: https://postgr.es/m/AApHDvpN4v3t_sdz4dvrv1Fx_ZPw=twSnxuTEytRYP7LFz5K9A@mail.gmail.com Reviewed-by: David Rowley <dgrowleyml@gmail.com>
2025-03-25Create accessor functions for TupleHashEntry.Jeff Davis
Refactor for upcoming optimizations. Reviewed-by: David Rowley <dgrowleyml@gmail.com> Discussion: https://postgr.es/m/1cc3b400a0e8eead18ff967436fa9e42c0c14cfb.camel@j-davis.com
2025-03-25HashAgg: use Bump allocator for hash TupleHashTable entries.Jeff Davis
The entries aren't freed until the entire hash table is destroyed, so use the Bump allocator to improve allocation speed, avoid wasting space on the chunk header, and avoid wasting space due to the power-of-two allocations. Discussion: https://postgr.es/m/CAApHDvqv1aNB4cM36FzRwivXrEvBO_LsG_eQ3nqDXTjECaatOQ@mail.gmail.com Reviewed-by: David Rowley
2025-03-15BitmapHeapScan uses the read stream APIMelanie Plageman
Make Bitmap Heap Scan use the read stream API instead of invoking ReadBuffer() for each block indicated by the bitmap. The read stream API handles prefetching, so remove all of the explicit prefetching from bitmap heap scan code. Now, heap table AM implements a read stream callback which uses the bitmap iterator to return the next required block to the read stream code. Tomas Vondra conducted extensive regression testing of this feature. Andres Freund, Thomas Munro, and I analyzed regressions and Thomas Munro patched the read stream API. Author: Melanie Plageman <melanieplageman@gmail.com> Reviewed-by: Tomas Vondra <tomas@vondra.me> Tested-by: Tomas Vondra <tomas@vondra.me> Tested-by: Andres Freund <andres@anarazel.de> Tested-by: Thomas Munro <thomas.munro@gmail.com> Tested-by: Nazir Bilal Yavuz <byavuz81@gmail.com> Discussion: https://postgr.es/m/flat/CAAKRu_ZwCwWFeL_H3ia26bP2e7HiKLWt0ZmGXPVwPO6uXq0vaA%40mail.gmail.com
2025-03-11Show index search count in EXPLAIN ANALYZE, take 2.Peter Geoghegan
Expose the count of index searches/index descents in EXPLAIN ANALYZE's output for index scan/index-only scan/bitmap index scan nodes. This information is particularly useful with scans that use ScalarArrayOp quals, where the number of index searches can be unpredictable due to implementation details that interact with physical index characteristics (at least with nbtree SAOP scans, since Postgres 17 commit 5bf748b8). The information shown also provides useful context when EXPLAIN ANALYZE runs a plan with an index scan node that successfully applied the skip scan optimization (set to be added to nbtree by an upcoming patch). The instrumentation works by teaching all index AMs to increment a new nsearches counter whenever a new index search begins. The counter is incremented at exactly the same point that index AMs already increment the pg_stat_*_indexes.idx_scan counter (we're counting the same event, but at the scan level rather than the relation level). Parallel queries have workers copy their local counter struct into shared memory when an index scan node ends -- even when it isn't a parallel aware scan node. An earlier version of this patch that only worked with parallel aware scans became commit 5ead85fb (though that was quickly reverted by commit d00107cd following "debug_parallel_query=regress" buildfarm failures). Our approach doesn't match the approach used when tracking other index scan related costs (e.g., "Rows Removed by Filter:"). It is comparable to the approach used in similar cases involving costs that are only readily accessible inside an access method, not from the executor proper (e.g., "Heap Blocks:" output for a Bitmap Heap Scan, which was recently enhanced to show per-worker costs by commit 5a1e6df3, using essentially the same scheme as the one used here). It is necessary for index AMs to have direct responsibility for maintaining the new counter, since the counter might need to be incremented multiple times per amgettuple call (or per amgetbitmap call). But it is also necessary for the executor proper to manage the shared memory now used to transfer each worker's counter struct to the leader. Author: Peter Geoghegan <pg@bowt.ie> Reviewed-By: Robert Haas <robertmhaas@gmail.com> Reviewed-By: Tomas Vondra <tomas@vondra.me> Reviewed-By: Masahiro Ikeda <ikedamsh@oss.nttdata.com> Reviewed-By: Matthias van de Meent <boekewurm+postgres@gmail.com> Discussion: https://postgr.es/m/CAH2-WzkRqvaqR2CTNqTZP0z6FuL4-3ED6eQB0yx38XBNj1v-4Q@mail.gmail.com Discussion: https://postgr.es/m/CAH2-Wz=PKR6rB7qbx+Vnd7eqeB5VTcrW=iJvAsTsKbdG+kW_UA@mail.gmail.com
2025-02-20Don't lock partitions pruned by initial pruningAmit Langote
Before executing a cached generic plan, AcquireExecutorLocks() in plancache.c locks all relations in a plan's range table to ensure the plan is safe for execution. However, this locks runtime-prunable relations that will later be pruned during "initial" runtime pruning, introducing unnecessary overhead. This commit defers locking for such relations to executor startup and ensures that if the CachedPlan is invalidated due to concurrent DDL during this window, replanning is triggered. Deferring these locks avoids unnecessary locking overhead for pruned partitions, resulting in significant speedup, particularly when many partitions are pruned during initial runtime pruning. * Changes to locking when executing generic plans: AcquireExecutorLocks() now locks only unprunable relations, that is, those found in PlannedStmt.unprunableRelids (introduced in commit cbc127917e), to avoid locking runtime-prunable partitions unnecessarily. The remaining locks are taken by ExecDoInitialPruning(), which acquires them only for partitions that survive pruning. This deferral does not affect the locks required for permission checking in InitPlan(), which takes place before initial pruning. ExecCheckPermissions() now includes an Assert to verify that all relations undergoing permission checks, none of which can be in the set of runtime-prunable relations, are properly locked. * Plan invalidation handling: Deferring locks introduces a window where prunable relations may be altered by concurrent DDL, invalidating the plan. A new function, ExecutorStartCachedPlan(), wraps ExecutorStart() to detect and handle invalidation caused by deferred locking. If invalidation occurs, ExecutorStartCachedPlan() updates CachedPlan using the new UpdateCachedPlan() function and retries execution with the updated plan. To ensure all code paths that may be affected by this handle invalidation properly, all callers of ExecutorStart that may execute a PlannedStmt from a CachedPlan have been updated to use ExecutorStartCachedPlan() instead. UpdateCachedPlan() replaces stale plans in CachedPlan.stmt_list. A new CachedPlan.stmt_context, created as a child of CachedPlan.context, allows freeing old PlannedStmts while preserving the CachedPlan structure and its statement list. This ensures that loops over statements in upstream callers of ExecutorStartCachedPlan() remain intact. ExecutorStart() and ExecutorStart_hook implementations now return a boolean value indicating whether plan initialization succeeded with a valid PlanState tree in QueryDesc.planstate, or false otherwise, in which case QueryDesc.planstate is NULL. Hook implementations are required to call standard_ExecutorStart() at the beginning, and if it returns false, they should do the same without proceeding. * Testing: To verify these changes, the delay_execution module tests scenarios where cached plans become invalid due to changes in prunable relations after deferred locks. * Note to extension authors: ExecutorStart_hook implementations must verify plan validity after calling standard_ExecutorStart(), as explained earlier. For example: if (prev_ExecutorStart) plan_valid = prev_ExecutorStart(queryDesc, eflags); else plan_valid = standard_ExecutorStart(queryDesc, eflags); if (!plan_valid) return false; <extension-code> return true; Extensions accessing child relations, especially prunable partitions, via ExecGetRangeTableRelation() must now ensure their RT indexes are present in es_unpruned_relids (introduced in commit cbc127917e), or they will encounter an error. This is a strict requirement after this change, as only relations in that set are locked. The idea of deferring some locks to executor startup, allowing locks for prunable partitions to be skipped, was first proposed by Tom Lane. Reviewed-by: Robert Haas <robertmhaas@gmail.com> (earlier versions) Reviewed-by: David Rowley <dgrowleyml@gmail.com> (earlier versions) Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> (earlier versions) Reviewed-by: Tomas Vondra <tomas@vondra.me> Reviewed-by: Junwang Zhao <zhjwpku@gmail.com> Discussion: https://postgr.es/m/CA+HiwqFGkMSge6TgC9KQzde0ohpAycLQuV7ooitEEpbKB0O_mg@mail.gmail.com
2025-02-17Fix an oversight in cbc127917 to handle MERGE correctlyAmit Langote
ExecInitModifyTable() forgot to trim MERGE-related lists to exclude entries for result relations pruned during initial pruning, so fix that. While at it, make the function's use of the pruned resultRelations list, rather than ModifyTable.resultRelations, more consistent. Reported-by: Alexander Lakhin <exclusion@gmail.com> (via sqlsmith) Reviewed-by: Junwang Zhao <zhjwpku@gmail.com> Discussion: https://postgr.es/m/e72c94d9-e5f9-4753-9bc1-69d72bd54b8a@gmail.com
2025-02-07Virtual generated columnsPeter Eisentraut
This adds a new variant of generated columns that are computed on read (like a view, unlike the existing stored generated columns, which are computed on write, like a materialized view). The syntax for the column definition is ... GENERATED ALWAYS AS (...) VIRTUAL and VIRTUAL is also optional. VIRTUAL is the default rather than STORED to match various other SQL products. (The SQL standard makes no specification about this, but it also doesn't know about VIRTUAL or STORED.) (Also, virtual views are the default, rather than materialized views.) Virtual generated columns are stored in tuples as null values. (A very early version of this patch had the ambition to not store them at all. But so much stuff breaks or gets confused if you have tuples where a column in the middle is completely missing. This is a compromise, and it still saves space over being forced to use stored generated columns. If we ever find a way to improve this, a bit of pg_upgrade cleverness could allow for upgrades to a newer scheme.) The capabilities and restrictions of virtual generated columns are mostly the same as for stored generated columns. In some cases, this patch keeps virtual generated columns more restricted than they might technically need to be, to keep the two kinds consistent. Some of that could maybe be relaxed later after separate careful considerations. Some functionality that is currently not supported, but could possibly be added as incremental features, some easier than others: - index on or using a virtual column - hence also no unique constraints on virtual columns - extended statistics on virtual columns - foreign-key constraints on virtual columns - not-null constraints on virtual columns (check constraints are supported) - ALTER TABLE / DROP EXPRESSION - virtual column cannot have domain type - virtual columns are not supported in logical replication The tests in generated_virtual.sql have been copied over from generated_stored.sql with the keyword replaced. This way we can make sure the behavior is mostly aligned, and the differences can be visible. Some tests for currently not supported features are currently commented out. Reviewed-by: Jian He <jian.universality@gmail.com> Reviewed-by: Dean Rasheed <dean.a.rasheed@gmail.com> Tested-by: Shlok Kyal <shlok.kyal.oss@gmail.com> Discussion: https://www.postgresql.org/message-id/flat/a368248e-69e4-40be-9c07-6c3b5880b0a6@eisentraut.org
2025-02-07Track unpruned relids to avoid processing pruned relationsAmit Langote
This commit introduces changes to track unpruned relations explicitly, making it possible for top-level plan nodes, such as ModifyTable and LockRows, to avoid processing partitions pruned during initial pruning. Scan-level nodes, such as Append and MergeAppend, already avoid the unnecessary processing by accessing partition pruning results directly via part_prune_index. In contrast, top-level nodes cannot access pruning results directly and need to determine which partitions remain unpruned. To address this, this commit introduces a new bitmapset field, es_unpruned_relids, which the executor uses to track the set of unpruned relations. This field is referenced during plan initialization to skip initializing certain nodes for pruned partitions. It is initialized with PlannedStmt.unprunableRelids, a new field that the planner populates with RT indexes of relations that cannot be pruned during runtime pruning. These include relations not subject to partition pruning and those required for execution regardless of pruning. PlannedStmt.unprunableRelids is computed during set_plan_refs() by removing the RT indexes of runtime-prunable relations, identified from PartitionPruneInfos, from the full set of relation RT indexes. ExecDoInitialPruning() then updates es_unpruned_relids by adding partitions that survive initial pruning. To support this, PartitionedRelPruneInfo and PartitionedRelPruningData now include a leafpart_rti_map[] array that maps partition indexes to their corresponding RT indexes. The former is used in set_plan_refs() when constructing unprunableRelids, while the latter is used in ExecDoInitialPruning() to convert partition indexes returned by get_matching_partitions() into RT indexes, which are then added to es_unpruned_relids. These changes make it possible for ModifyTable and LockRows nodes to process only relations that remain unpruned after initial pruning. ExecInitModifyTable() trims lists, such as resultRelations, withCheckOptionLists, returningLists, and updateColnosLists, to consider only unpruned partitions. It also creates ResultRelInfo structs only for these partitions. Similarly, child RowMarks for pruned relations are skipped. By avoiding unnecessary initialization of structures for pruned partitions, these changes improve the performance of updates and deletes on partitioned tables during initial runtime pruning. Due to ExecInitModifyTable() changes as described above, EXPLAIN on a plan for UPDATE and DELETE that uses runtime initial pruning no longer lists partitions pruned during initial pruning. Reviewed-by: Robert Haas <robertmhaas@gmail.com> (earlier versions) Reviewed-by: Tomas Vondra <tomas@vondra.me> Discussion: https://postgr.es/m/CA+HiwqFGkMSge6TgC9KQzde0ohpAycLQuV7ooitEEpbKB0O_mg@mail.gmail.com
2025-01-31Perform runtime initial pruning outside ExecInitNode()Amit Langote
This commit builds on the prior change that moved PartitionPruneInfos out of individual plan nodes into a list in PlannedStmt, making it possible to initialize PartitionPruneStates without traversing the plan tree and perform runtime initial pruning before ExecInitNode() initializes the plan trees. These tasks are now handled in a new routine, ExecDoInitialPruning(), which is called by InitPlan() before calling ExecInitNode() on various plan trees. ExecDoInitialPruning() performs the initial pruning and saves the result -- a Bitmapset of indexes for surviving child subnodes -- in es_part_prune_results, a list in EState. PartitionPruneStates created for initial pruning are stored in es_part_prune_states, another list in EState, for later use during exec pruning. Both lists are parallel to es_part_prune_infos, which holds the PartitionPruneInfos from PlannedStmt, enabling shared indexing. PartitionPruneStates initialized in ExecDoInitialPruning() now include only the PartitionPruneContexts for initial pruning steps. Exec pruning contexts are initialized later in ExecInitPartitionExecPruning() when the parent plan node is initialized, as the exec pruning step expressions depend on the parent node's PlanState. The existing function PartitionPruneFixSubPlanMap() has been repurposed for this initialization to avoid duplicating a similar loop structure for finding PartitionedRelPruningData to initialize exec pruning contexts for. It has been renamed to InitExecPruningContexts() to reflect its new primary responsibility. The original logic to "fix subplan maps" remains intact but is now encapsulated within the renamed function. This commit removes two obsolete Asserts in partkey_datum_from_expr(). The ExprContext used for pruning expression evaluation is now independent of the parent PlanState, making these Asserts unnecessary. By centralizing pruning logic and decoupling it from the plan initialization step (ExecInitNode()), this change sets the stage for future patches that will use the result of initial pruning to save the overhead of redundant processing for pruned partitions. Reviewed-by: Robert Haas <robertmhaas@gmail.com> Reviewed-by: Tomas Vondra <tomas@vondra.me> Discussion: https://postgr.es/m/CA+HiwqFGkMSge6TgC9KQzde0ohpAycLQuV7ooitEEpbKB0O_mg@mail.gmail.com
2025-01-30Move PartitionPruneInfo out of plan nodes into PlannedStmtAmit Langote
This moves PartitionPruneInfo from plan nodes to PlannedStmt, simplifying traversal by centralizing all PartitionPruneInfo structures in a single list in it, which holds all instances for the main query and its subqueries. Instead of plan nodes (Append or MergeAppend) storing PartitionPruneInfo pointers, they now reference an index in this list. A bitmapset field is added to PartitionPruneInfo to store the RT indexes corresponding to the apprelids field in Append or MergeAppend. This allows execution pruning logic to verify that it operates on the correct plan node, mainly to facilitate debugging. Duplicated code in set_append_references() and set_mergeappend_references() is refactored into a new function, register_pruneinfo(). This updates RT indexes by applying rtoffet and adds PartitionPruneInfo to the global list in PlannerGlobal. By allowing pruning to be performed without traversing the plan tree, this change lays the groundwork for runtime initial pruning to occur independently of plan tree initialization. Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org> (earlier version) Reviewed-by: Robert Haas <robertmhaas@gmail.com> Reviewed-by: Tomas Vondra <tomas@vondra.me> Discussion: https://postgr.es/m/CA+HiwqFGkMSge6TgC9KQzde0ohpAycLQuV7ooitEEpbKB0O_mg@mail.gmail.com
2025-01-16Add OLD/NEW support to RETURNING in DML queries.Dean Rasheed
This allows the RETURNING list of INSERT/UPDATE/DELETE/MERGE queries to explicitly return old and new values by using the special aliases "old" and "new", which are automatically added to the query (if not already defined) while parsing its RETURNING list, allowing things like: RETURNING old.colname, new.colname, ... RETURNING old.*, new.* Additionally, a new syntax is supported, allowing the names "old" and "new" to be changed to user-supplied alias names, e.g.: RETURNING WITH (OLD AS o, NEW AS n) o.colname, n.colname, ... This is useful when the names "old" and "new" are already defined, such as inside trigger functions, allowing backwards compatibility to be maintained -- the interpretation of any existing queries that happen to already refer to relations called "old" or "new", or use those as aliases for other relations, is not changed. For an INSERT, old values will generally be NULL, and for a DELETE, new values will generally be NULL, but that may change for an INSERT with an ON CONFLICT ... DO UPDATE clause, or if a query rewrite rule changes the command type. Therefore, we put no restrictions on the use of old and new in any DML queries. Dean Rasheed, reviewed by Jian He and Jeff Davis. Discussion: https://postgr.es/m/CAEZATCWx0J0-v=Qjc6gXzR=KtsdvAE7Ow=D=mu50AgOe+pvisQ@mail.gmail.com
2025-01-13Revert "TupleHashTable: store additional data along with tuple."Jeff Davis
This reverts commit e0ece2a981ee9068f50c4423e303836c2585eb02 due to performance regressions. Reported-by: David Rowley
2025-01-13Fix pgindent damageRichard Guo
Oversight in commit e0ece2a98.
2025-01-11TupleHashTable: store additional data along with tuple.Jeff Davis
Previously, the caller needed to allocate the memory and the TupleHashTable would store a pointer to it. That wastes space for the palloc overhead as well as the size of the pointer itself. Now, the TupleHashTable relies on the caller to correctly specify the additionalsize, and allocates that amount of space. The caller can then request a pointer into that space. Discussion: https://postgr.es/m/b9cbf0219a9859dc8d240311643ff4362fd9602c.camel@j-davis.com Reviewed-by: Heikki Linnakangas
2025-01-07Remove unused TupleHashTableData->entrysize.Jeff Davis
Discussion: https://postgr.es/m/7530bd8783b1a78d53a3c70383e38d8da0a5ffe5.camel%40j-davis.com
2025-01-01Update copyright for 2025Bruce Momjian
Backpatch-through: 13
2024-12-19Convert SetOp to read its inputs as outerPlan and innerPlan.Tom Lane
The original design for set operations involved appending the two input relations into one and adding a flag column that allows distinguishing which side each row came from. Then the SetOp node pries them apart again based on the flag. This is bizarre. The only apparent reason to do it is that when sorting, we'd only need one Sort node not two. But since sorting is at least O(N log N), sorting all the data is actually worse than sorting each side separately --- plus, we have no chance of taking advantage of presorted input. On top of that, adding the flag column frequently requires an additional projection step that adds cycles, and then the Append node isn't free either. Let's get rid of all of that and make the SetOp node have two separate children, using the existing outerPlan/innerPlan infrastructure. This initial patch re-implements nodeSetop.c and does a bare minimum of work on the planner side to generate correctly-shaped plans. In particular, I've tried not to change the cost estimates here, so that the visible changes in the regression test results will only involve removal of useless projection steps and not any changes in whether to use sorted vs hashed mode. For SORTED mode, we combine successive identical tuples from each input into groups, and then merge-join the groups. The tuple comparisons now use SortSupport instead of simple equality, but the group-formation part should involve roughly the same number of tuple comparisons as before. The cross-comparisons between left and right groups probably add to that, but I'm not sure to quantify how many more comparisons we might need. For HASHED mode, nodeSetop's logic is almost the same as before, just refactored into two separate loops instead of one loop that has an assumption that it will see all the left-hand inputs first. In both modes, I added early-exit logic to not bother reading the right-hand relation if the left-hand input is empty, since neither INTERSECT nor EXCEPT modes can produce any output if the left input is empty. This could have been done before in the hashed mode, but not in sorted mode. Sorted mode can also stop as soon as it exhausts the left input; any remaining right-hand tuples cannot have matches. Also, this patch adds some infrastructure for detecting whether child plan nodes all output the same type of tuple table slot. If they do, the hash table logic can use slightly more efficient code based on assuming that that's the input slot type it will see. We'll make use of that infrastructure in other plan node types later. Patch by me; thanks to Richard Guo and David Rowley for review. Discussion: https://postgr.es/m/1850138.1731549611@sss.pgh.pa.us
2024-12-18Bitmap Table Scans use unified TBMIteratorMelanie Plageman
With the repurposing of TBMIterator as an interface for both parallel and serial iteration through TIDBitmaps in commit 7f9d4187e7bab10329cc, bitmap table scans may now use it. Modify bitmap table scan code to use the TBMIterator. This requires moving around a bit of code, so a few variables are initialized elsewhere. Author: Melanie Plageman Reviewed-by: Tomas Vondra Discussion: https://postgr.es/m/c736f6aa-8b35-4e20-9621-62c7c82e2168%40vondra.me
2024-12-18Add common interface for TBMIteratorsMelanie Plageman
Add and use TBMPrivateIterator, which replaces the current TBMIterator for serial use cases, and repurpose TBMIterator to be a unified interface for both the serial ("private") and parallel ("shared") TID Bitmap iterator interfaces. This encapsulation simplifies call sites for callers supporting both parallel and serial TID Bitmap access. TBMIterator is not yet used in this commit. Author: Melanie Plageman Reviewed-by: Tomas Vondra, Heikki Linnakangas Discussion: https://postgr.es/m/063e4eb4-32d9-439e-a0b1-75565a9835a8%40iki.fi
2024-12-11Use ExprStates for hashing in GROUP BY and SubPlansDavid Rowley
This speeds up obtaining hash values for GROUP BY and hashed SubPlans by using the ExprState support for hashing, thus allowing JIT compilation for obtaining hash values for these operations. This, even without JIT compilation, has been shown to improve Hash Aggregate performance in some cases by around 15% and hashed NOT IN queries in one case by over 30%, however, real-world cases are likely to see smaller gains as the test cases used were purposefully designed to have high hashing overheads by keeping the hash table small to prevent additional memory overheads that would be a factor when working with large hash tables. In passing, fix a hypothetical bug in ExecBuildHash32Expr() so that the initial value is stored directly in the ExprState's result field if there are no expressions to hash. None of the current users of this function use an initial value, so the bug is only hypothetical. Reviewed-by: Andrei Lepikhov <lepihov@gmail.com> Discussion: https://postgr.es/m/CAApHDvpYSO3kc9UryMevWqthTBrxgfd9djiAjKHMPUSQeX9vdQ@mail.gmail.com
2024-10-31Remove unused field from SubPlanState structDavid Rowley
bf6c614a2 did some conversion work to use ExprState instead of manually calling equality functions to check if one set of values is not distinct from another set. That patch removed many of the fields that became redundant as a result of that change, but it forgot to remove SubPlanState.tab_eq_funcs. Fix that. In passing, fix the header comment for TupleHashEntryData to correctly spell the field name it's talking about. Author: Rafia Sabih <rafia.pghackers@gmail.com> Reviewed-by: Andrei Lepikhov <lepihov@gmail.com> Discussion: https://postgr.es/m/CA+FpmFeycdombFzrjZw7Rmc29CVm4OOzCWwu=dVBQ6q=PX8SvQ@mail.gmail.com Discussion: https://postgr.es/m/CAApHDvrWR2jYVhec=COyF2g2BE_ns91NDsCHAMFiXbyhEujKdQ@mail.gmail.com
2024-10-25Make table_scan_bitmap_next_block() async-friendlyMelanie Plageman
Move all responsibility for indicating a block is exhuasted into table_scan_bitmap_next_tuple() and advance the main iterator in heap-specific code. This flow control makes more sense and is a step toward using the read stream API for bitmap heap scans. Previously, table_scan_bitmap_next_block() returned false to indicate table_scan_bitmap_next_tuple() should not be called for the tuples on the page. This happened both when 1) there were no visible tuples on the page and 2) when the block returned by the iterator was past the end of the table. BitmapHeapNext() (generic bitmap table scan code) handled the case when the bitmap was exhausted. It makes more sense for table_scan_bitmap_next_tuple() to return false when there are no visible tuples on the page and table_scan_bitmap_next_block() to return false when the bitmap is exhausted or there are no more blocks in the table. As part of this new design, TBMIterateResults are no longer used as a flow control mechanism in BitmapHeapNext(), so we removed table_scan_bitmap_next_tuple's TBMIterateResult parameter. Note that the prefetch iterator is still saved in the BitmapHeapScanState node and advanced in generic bitmap table scan code. This is because 1) it was not necessary to change the prefetch iterator location to change the flow control in BitmapHeapNext() 2) modifying prefetch iterator management requires several more steps better split over multiple commits and 3) the prefetch iterator will be removed once the read stream API is used. Author: Melanie Plageman Reviewed-by: Tomas Vondra, Andres Freund, Heikki Linnakangas, Mark Dilger Discussion: https://postgr.es/m/063e4eb4-32d9-439e-a0b1-75565a9835a8%40iki.fi
2024-10-08Introduce two fields in EState to track parallel worker activityMichael Paquier
These fields can be set by executor nodes to record how many parallel workers were planned to be launched and how many of them have been actually launched within the number initially planned. This data is able to give an approximation of the parallel worker draught a system is facing, making easier the tuning of related configuration parameters. These fields will be used by some follow-up patches to populate other parts of the system with their data. Author: Guillaume Lelarge, Benoit Lobréau Discussion: https://postgr.es/m/783bc7f7-659a-42fa-99dd-ee0565644e25@dalibo.com Discussion: https://postgr.es/m/CAECtzeWtTGOK0UgKXdDGpfTVSa5bd_VbUt6K6xn8P7X+_dZqKw@mail.gmail.com
2024-09-24For inplace update durability, make heap_update() callers wait.Noah Misch
The previous commit fixed some ways of losing an inplace update. It remained possible to lose one when a backend working toward a heap_update() copied a tuple into memory just before inplace update of that tuple. In catalogs eligible for inplace update, use LOCKTAG_TUPLE to govern admission to the steps of copying an old tuple, modifying it, and issuing heap_update(). This includes MERGE commands. To avoid changing most of the pg_class DDL, don't require LOCKTAG_TUPLE when holding a relation lock sufficient to exclude inplace updaters. Back-patch to v12 (all supported versions). In v13 and v12, "UPDATE pg_class" or "UPDATE pg_database" can still lose an inplace update. The v14+ UPDATE fix needs commit 86dc90056dfdbd9d1b891718d2e5614e3e432f35, and it wasn't worth reimplementing that fix without such infrastructure. Reviewed by Nitin Motiani and (in earlier versions) Heikki Linnakangas. Discussion: https://postgr.es/m/20231027214946.79.nmisch@google.com
2024-09-17Add temporal PRIMARY KEY and UNIQUE constraintsPeter Eisentraut
Add WITHOUT OVERLAPS clause to PRIMARY KEY and UNIQUE constraints. These are backed by GiST indexes instead of B-tree indexes, since they are essentially exclusion constraints with = for the scalar parts of the key and && for the temporal part. (previously committed as 46a0cd4cefb, reverted by 46a0cd4cefb; the new part is this:) Because 'empty' && 'empty' is false, the temporal PK/UQ constraint allowed duplicates, which is confusing to users and breaks internal expectations. For instance, when GROUP BY checks functional dependencies on the PK, it allows selecting other columns from the table, but in the presence of duplicate keys you could get the value from any of their rows. So we need to forbid empties. This all means that at the moment we can only support ranges and multiranges for temporal PK/UQs, unlike the original patch (above). Documentation and tests for this are added. But this could conceivably be extended by introducing some more general support for the notion of "empty" for other types. Author: Paul A. Jungwirth <pj@illuminatedcomputing.com> Reviewed-by: Peter Eisentraut <peter@eisentraut.org> Reviewed-by: jian he <jian.universality@gmail.com> Discussion: https://www.postgresql.org/message-id/flat/CA+renyUApHgSZF9-nd-a0+OPGharLQLO=mDHcY4_qQ0+noCUVg@mail.gmail.com
2024-09-06Update comment about ExprState.escontextAmit Langote
The updated comment provides more helpful guidance by mentioning that escontext should be set when soft error handling is needed. Reported-by: Jian He <jian.universality@gmail.com> Discussion: https://postgr.es/m/CACJufxEo4sUjKCYtda0_qt9tazqqKPmF1cqhW9KBOUeJFqQd2g@mail.gmail.com Backpatch-through: 17
2024-09-05Optimize WindowAgg's use of tuplestoresDavid Rowley
When WindowAgg finished one partition of a PARTITION BY, it previously would call tuplestore_end() to purge all the stored tuples before again calling tuplestore_begin_heap() and carefully setting up all of the tuplestore read pointers exactly as required for the given frameOptions. Since the frameOptions don't change between partitions, this part does not make much sense. For queries that had very few rows per partition, the overhead of this was very large. It seems much better to create the tuplestore and the read pointers once and simply call tuplestore_clear() at the end of each partition. tuplestore_clear() moves all of the read pointers back to the start position and deletes all the previously stored tuples. A simple test query with 1 million partitions and 1 tuple per partition has been shown to run around 40% faster than without this change. The additional effort seems to have mostly been spent in malloc/free. Making this work required adding a new bool field to WindowAggState which had the unfortunate effect of being the 9th bool field in a group resulting in the struct being enlarged. Here we shuffle the fields around a little so that the two bool fields for runcondition relating stuff fit into existing padding. Also, move the "runcondition" field to be near those. This frees up enough space with the other bool fields so that the newly added one fits into the padding bytes. This was done to address a very small but apparent performance regression with queries containing a large number of rows per partition. Reviewed-by: Ashutosh Bapat <ashutosh.bapat.oss@gmail.com> Reviewed-by: Tatsuo Ishii <ishii@postgresql.org> Discussion: https://postgr.es/m/CAHoyFK9n-QCXKTUWT_xxtXninSMEv%2BgbJN66-y6prM3f4WkEHw%40mail.gmail.com
2024-08-20Speed up Hash Join by making ExprStates support hashingDavid Rowley
Here we add ExprState support for obtaining a 32-bit hash value from a list of expressions. This allows both faster hashing and also JIT compilation of these expressions. This is especially useful when hash joins have multiple join keys as the previous code called ExecEvalExpr on each hash join key individually and that was inefficient as tuple deformation would have only taken into account one key at a time, which could lead to walking the tuple once for each join key. With the new code, we'll determine the maximum attribute required and deform the tuple to that point only once. Some performance tests done with this change have shown up to a 20% performance increase of a query containing a Hash Join without JIT compilation and up to a 26% performance increase when JIT is enabled and optimization and inlining were performed by the JIT compiler. The performance increase with 1 join column was less with a 14% increase with and without JIT. This test was done using a fairly small hash table and a large number of hash probes. The increase will likely be less with large tables, especially ones larger than L3 cache as memory pressure is more likely to be the limiting factor there. This commit only addresses Hash Joins, but lays expression evaluation and JIT compilation infrastructure for other hashing needs such as Hash Aggregate. Author: David Rowley Reviewed-by: Alexey Dvoichenkov <alexey@hyperplane.net> Reviewed-by: Tels <nospam-pg-abuse@bloodgate.com> Discussion: https://postgr.es/m/CAApHDvoexAxgQFNQD_GRkr2O_eJUD1-wUGm%3Dm0L%2BGc%3DT%3DkEa4g%40mail.gmail.com
2024-08-12Fix outdated commentsDavid Rowley
A few fields in ResultRelInfo are now also used for MERGE. Update the comments to mention that. Reported-by: jian he <jian.universality@gmail.com> Discussion: https://postgr.es/m/CACJufxH8-NvFhLcSZZTTW+1M9AfS4+SOTKmyPG7ZhzNvN=+NkA@mail.gmail.com:wq
2024-08-01Evaluate arguments of correlated SubPlans in the referencing ExprStateAndres Freund
Until now we generated an ExprState for each parameter to a SubPlan and evaluated them one-by-one ExecScanSubPlan. That's sub-optimal as creating lots of small ExprStates a) makes JIT compilation more expensive b) wastes memory c) is a bit slower to execute This commit arranges to evaluate parameters to a SubPlan as part of the ExprState referencing a SubPlan, using the new EEOP_PARAM_SET expression step. We emit one EEOP_PARAM_SET for each argument to a subplan, just before the EEOP_SUBPLAN step. It likely is worth using EEOP_PARAM_SET in other places as well, e.g. for SubPlan outputs, nestloop parameters and - more ambitiously - to get rid of ExprContext->domainValue/caseValue/ecxt_agg*. But that's for later. Author: Andres Freund <andres@anarazel.de> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Reviewed-by: Alena Rybakina <lena.ribackina@yandex.ru> Discussion: https://postgr.es/m/20230225214401.346ancgjqc3zmvek@awork3.anarazel.de
2024-07-09Show Parallel Bitmap Heap Scan worker stats in EXPLAIN ANALYZEDavid Rowley
Nodes like Memoize report the cache stats for each parallel worker, so it makes sense to show the exact and lossy pages in Parallel Bitmap Heap Scan in a similar way. Likewise, Sort shows the method and memory used for each worker. There was some discussion on whether the leader stats should include the totals for each parallel worker or not. I did some analysis on this to see what other parallel node types do and it seems only Parallel Hash does anything like this. All the rest, per what's supported by ExecParallelRetrieveInstrumentation() are consistent with each other. Author: David Geier <geidav.pg@gmail.com> Author: Heikki Linnakangas <hlinnaka@iki.fi> Author: Donghang Lin <donghanglin@gmail.com> Author: Alena Rybakina <lena.ribackina@yandex.ru> Author: David Rowley <dgrowleyml@gmail.com> Reviewed-by: Dmitry Dolgov <9erthalion6@gmail.com> Reviewed-by: Michael Christofides <michael@pgmustard.com> Reviewed-by: Robert Haas <robertmhaas@gmail.com> Reviewed-by: Dilip Kumar <dilipbalaut@gmail.com> Reviewed-by: Tomas Vondra <tomas.vondra@enterprisedb.com> Reviewed-by: Melanie Plageman <melanieplageman@gmail.com> Reviewed-by: Donghang Lin <donghanglin@gmail.com> Reviewed-by: Masahiro Ikeda <Masahiro.Ikeda@nttdata.com> Discussion: https://postgr.es/m/b3d80961-c2e5-38cc-6a32-61886cdf766d%40gmail.com
2024-07-08Widen lossy and exact page counters for Bitmap Heap ScanDavid Rowley
Both of these counters were using the "long" data type. On MSVC that's a 32-bit type. On modern hardware, I was able to demonstrate that we can wrap those counters with a query that only takes 15 minutes to run. This issue may manifest itself either by not showing the values of the counters because they've wrapped and are less than zero, resulting in them being filtered by the > 0 checks in show_tidbitmap_info(), or bogus numbers being displayed which are modulus 2^32 of the actual number. Widen these counters to uint64. Discussion: https://postgr.es/m/CAApHDvpS_97TU+jWPc=T83WPp7vJa1dTw3mojEtAVEZOWh9bjQ@mail.gmail.com
2024-06-28SQL/JSON: Always coerce JsonExpr result at runtimeAmit Langote
Instead of looking up casts at parse time for converting the result of JsonPath* query functions to the specified or the default RETURNING type, always perform the conversion at runtime using either the target type's input function or the function json_populate_type(). There are two motivations for this change: 1. json_populate_type() coerces to types with typmod such that any string values that exceed length limit cause an error instead of silent truncation, which is necessary to be standard-conforming. 2. It was possible to end up with a cast expression that doesn't support soft handling of errors causing bugs in the of handling ON ERROR clause. JsonExpr.coercion_expr which would store the cast expression is no longer necessary, so remove. Bump catversion because stored rules change because of the above removal. Reported-by: Alvaro Herrera <alvherre@alvh.no-ip.org> Reviewed-by: Jian He <jian.universality@gmail.com> Discussion: Discussion: https://postgr.es/m/202405271326.5a5rprki64aw%40alvherre.pgsql
2024-05-01Ensure we allocate NAMEDATALEN bytes for names in Index Only ScansDavid Rowley
As an optimization, we store "name" columns as cstrings in btree indexes. Here we modify it so that Index Only Scans convert these cstrings back to names with NAMEDATALEN bytes rather than storing the cstring in the tuple slot, as was happening previously. Bug: #17855 Reported-by: Alexander Lakhin Reviewed-by: Alexander Lakhin, Tom Lane Discussion: https://postgr.es/m/17855-5f523e0f9769a566@postgresql.org Backpatch-through: 12, all supported versions
2024-04-23Remove some unnecessary fields from executor nodes.Tom Lane
JsonExprState.input_finfo is only assigned to, never read, and it's really fairly useless since the value can be gotten out of the adjacent input_fcinfo field. Let's remove it before someone starts to depend on it. While here, also remove TidScanState.tss_htup and AggState.combinedproj, which are referenced nowhere. Those should have been removed by the commits that caused them to become disused, but were not. I don't think a catversion bump is necessary here, since plan trees are never stored on disk. Matthias van de Meent Discussion: https://postgr.es/m/CAEze2WjsY4d0TBymLNGK4zpttUcg_YZaTjyWz2VfDUV6YH8wXQ@mail.gmail.com
2024-04-19Use macro NUM_MERGE_MATCH_KINDS instead of '3' in MERGE code.Dean Rasheed
Code quality improvement for 0294df2f1f84. Aleksander Alekseev, reviewed by Richard Guo. Discussion: https://postgr.es/m/CAJ7c6TMsiaV5urU_Pq6zJ2tXPDwk69-NKVh4AMN5XrRiM7N%2BGA%40mail.gmail.com
2024-04-06BitmapHeapScan: Push skip_fetch optimization into table AMTomas Vondra
Commit 7c70996ebf0949b142 introduced an optimization to allow bitmap scans to operate like index-only scans by not fetching a block from the heap if none of the underlying data is needed and the block is marked all visible in the visibility map. With the introduction of table AMs, a FIXME was added to this code indicating that the skip_fetch logic should be pushed into the table AM-specific code, as not all table AMs may use a visibility map in the same way. This commit resolves this FIXME for the current block. The layering violation is still present in BitmapHeapScans's prefetching code, which uses the visibility map to decide whether or not to prefetch a block. However, this can be addressed independently. Author: Melanie Plageman Reviewed-by: Andres Freund, Heikki Linnakangas, Tomas Vondra, Mark Dilger Discussion: https://postgr.es/m/CAAKRu_ZwCwWFeL_H3ia26bP2e7HiKLWt0ZmGXPVwPO6uXq0vaA%40mail.gmail.com
2024-04-04Add basic JSON_TABLE() functionalityAmit Langote
JSON_TABLE() allows JSON data to be converted into a relational view and thus used, for example, in a FROM clause, like other tabular data. Data to show in the view is selected from a source JSON object using a JSON path expression to get a sequence of JSON objects that's called a "row pattern", which becomes the source to compute the SQL/JSON values that populate the view's output columns. Column values themselves are computed using JSON path expressions applied to each of the JSON objects comprising the "row pattern", for which the SQL/JSON query functions added in 6185c9737cf4 are used. To implement JSON_TABLE() as a table function, this augments the TableFunc and TableFuncScanState nodes that are currently used to support XMLTABLE() with some JSON_TABLE()-specific fields. Note that the JSON_TABLE() spec includes NESTED COLUMNS and PLAN clauses, which are required to provide more flexibility to extract data out of nested JSON objects, but they are not implemented here to keep this commit of manageable size. Author: Nikita Glukhov <n.gluhov@postgrespro.ru> Author: Teodor Sigaev <teodor@sigaev.ru> Author: Oleg Bartunov <obartunov@gmail.com> Author: Alexander Korotkov <aekorotkov@gmail.com> Author: Andrew Dunstan <andrew@dunslane.net> Author: Amit Langote <amitlangote09@gmail.com> Author: Jian He <jian.universality@gmail.com> Reviewers have included (in no particular order): Andres Freund, Alexander Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu, Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby, Álvaro Herrera, Jian He Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de Discussion: https://postgr.es/m/abd9b83b-aa66-f230-3d6d-734817f0995d%40postgresql.org Discussion: https://postgr.es/m/CA+HiwqE4XTdfb1nW=Ojoy_tQSRhYt-q_kb6i5d4xcKyrLC1Nbg@mail.gmail.com
2024-03-30Add support for MERGE ... WHEN NOT MATCHED BY SOURCE.Dean Rasheed
This allows MERGE commands to include WHEN NOT MATCHED BY SOURCE actions, which operate on rows that exist in the target relation, but not in the data source. These actions can execute UPDATE, DELETE, or DO NOTHING sub-commands. This is in contrast to already-supported WHEN NOT MATCHED actions, which operate on rows that exist in the data source, but not in the target relation. To make this distinction clearer, such actions may now be written as WHEN NOT MATCHED BY TARGET. Writing WHEN NOT MATCHED without specifying BY SOURCE or BY TARGET is equivalent to writing WHEN NOT MATCHED BY TARGET. Dean Rasheed, reviewed by Alvaro Herrera, Ted Yu and Vik Fearing. Discussion: https://postgr.es/m/CAEZATCWqnKGc57Y_JanUBHQXNKcXd7r=0R4NEZUVwP+syRkWbA@mail.gmail.com
2024-03-21Add SQL/JSON query functionsAmit Langote
This introduces the following SQL/JSON functions for querying JSON data using jsonpath expressions: JSON_EXISTS(), which can be used to apply a jsonpath expression to a JSON value to check if it yields any values. JSON_QUERY(), which can be used to to apply a jsonpath expression to a JSON value to get a JSON object, an array, or a string. There are various options to control whether multi-value result uses array wrappers and whether the singleton scalar strings are quoted or not. JSON_VALUE(), which can be used to apply a jsonpath expression to a JSON value to return a single scalar value, producing an error if it multiple values are matched. Both JSON_VALUE() and JSON_QUERY() functions have options for handling EMPTY and ERROR conditions, which can be used to specify the behavior when no values are matched and when an error occurs during jsonpath evaluation, respectively. Author: Nikita Glukhov <n.gluhov@postgrespro.ru> Author: Teodor Sigaev <teodor@sigaev.ru> Author: Oleg Bartunov <obartunov@gmail.com> Author: Alexander Korotkov <aekorotkov@gmail.com> Author: Andrew Dunstan <andrew@dunslane.net> Author: Amit Langote <amitlangote09@gmail.com> Author: Peter Eisentraut <peter@eisentraut.org> Author: Jian He <jian.universality@gmail.com> Reviewers have included (in no particular order): Andres Freund, Alexander Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu, Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby, Álvaro Herrera, Jian He, Anton A. Melnikov, Nikita Malakhov, Peter Eisentraut, Tomas Vondra Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de Discussion: https://postgr.es/m/abd9b83b-aa66-f230-3d6d-734817f0995d%40postgresql.org Discussion: https://postgr.es/m/CA+HiwqHROpf9e644D8BRqYvaAPmgBZVup-xKMDPk-nd4EpgzHw@mail.gmail.com Discussion: https://postgr.es/m/CA+HiwqE4XTdfb1nW=Ojoy_tQSRhYt-q_kb6i5d4xcKyrLC1Nbg@mail.gmail.com
2024-03-17Add RETURNING support to MERGE.Dean Rasheed
This allows a RETURNING clause to be appended to a MERGE query, to return values based on each row inserted, updated, or deleted. As with plain INSERT, UPDATE, and DELETE commands, the returned values are based on the new contents of the target table for INSERT and UPDATE actions, and on its old contents for DELETE actions. Values from the source relation may also be returned. As with INSERT/UPDATE/DELETE, the output of MERGE ... RETURNING may be used as the source relation for other operations such as WITH queries and COPY commands. Additionally, a special function merge_action() is provided, which returns 'INSERT', 'UPDATE', or 'DELETE', depending on the action executed for each row. The merge_action() function can be used anywhere in the RETURNING list, including in arbitrary expressions and subqueries, but it is an error to use it anywhere outside of a MERGE query's RETURNING list. Dean Rasheed, reviewed by Isaac Morland, Vik Fearing, Alvaro Herrera, Gurjeet Singh, Jian He, Jeff Davis, Merlin Moncure, Peter Eisentraut, and Wolfgang Walther. Discussion: http://postgr.es/m/CAEZATCWePEGQR5LBn-vD6SfeLZafzEm2Qy_L_Oky2=qw2w3Pzg@mail.gmail.com
2024-03-14Remove redundant snapshot copying from parallel leader to workersHeikki Linnakangas
The parallel query infrastructure copies the leader backend's active snapshot to the worker processes. But BitmapHeapScan node also had bespoken code to pass the snapshot from leader to the worker. That was redundant, so remove it. The removed code was analogous to the snapshot serialization in table_parallelscan_initialize(), but that was the wrong role model. A parallel bitmap heap scan is more like an independent non-parallel bitmap heap scan in each parallel worker as far as the table AM is concerned, because the coordination is done in nodeBitmapHeapscan.c, and the table AM doesn't need to know anything about it. This relies on the assumption that es_snapshot == GetActiveSnapshot(). That's not a new assumption, things would get weird if you used the QueryDesc's snapshot for visibility checks in the scans, but the active snapshot for evaluating quals, for example. This could use some refactoring and cleanup, but for now, just add some assertions. Reviewed-by: Dilip Kumar, Robert Haas Discussion: https://www.postgresql.org/message-id/5f3b9d59-0f43-419d-80ca-6d04c07cf61a@iki.fi
2024-01-24Add soft error handling to some expression nodesAmit Langote
This adjusts the code for CoerceViaIO and CoerceToDomain expression nodes to handle errors softly. For CoerceViaIo, this adds a new ExprEvalStep opcode EEOP_IOCOERCE_SAFE, which is implemented in the new accompanying function ExecEvalCoerceViaIOSafe(). The only difference from EEOP_IOCOERCE's inline implementation is that the input function receives an ErrorSaveContext via the function's FunctionCallInfo.context, which it can use to handle errors softly. For CoerceToDomain, this simply entails replacing the ereport() in ExecEvalConstraintNotNull() and ExecEvalConstraintCheck() by errsave() passing it the ErrorSaveContext passed in the expression's ExprEvalStep. In both cases, the ErrorSaveContext to be used is passed by setting ExprState.escontext to point to it before calling ExecInitExprRec() on the expression tree whose errors are to be handled softly. Note that there's no functional change as of this commit as no call site of ExecInitExprRec() has been changed. This is intended for implementing new SQL/JSON expression nodes in future commits. Extracted from a much larger patch to add SQL/JSON query functions. Author: Nikita Glukhov <n.gluhov@postgrespro.ru> Author: Teodor Sigaev <teodor@sigaev.ru> Author: Oleg Bartunov <obartunov@gmail.com> Author: Alexander Korotkov <aekorotkov@gmail.com> Author: Andrew Dunstan <andrew@dunslane.net> Author: Amit Langote <amitlangote09@gmail.com> Reviewers have included (in no particular order) Andres Freund, Alexander Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu, Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby, Álvaro Herrera, Jian He, Peter Eisentraut Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de Discussion: https://postgr.es/m/abd9b83b-aa66-f230-3d6d-734817f0995d%40postgresql.org Discussion: https://postgr.es/m/CA+HiwqHROpf9e644D8BRqYvaAPmgBZVup-xKMDPk-nd4EpgzHw@mail.gmail.com Discussion: https://postgr.es/m/CA+HiwqE4XTdfb1nW=Ojoy_tQSRhYt-q_kb6i5d4xcKyrLC1Nbg@mail.gmail.com
2024-01-04Update copyright for 2024Bruce Momjian
Reported-by: Michael Paquier Discussion: https://postgr.es/m/ZZKTDPxBBMt3C0J9@paquier.xyz Backpatch-through: 12
2023-10-26Add trailing commas to enum definitionsPeter Eisentraut
Since C99, there can be a trailing comma after the last value in an enum definition. A lot of new code has been introducing this style on the fly. Some new patches are now taking an inconsistent approach to this. Some add the last comma on the fly if they add a new last value, some are trying to preserve the existing style in each place, some are even dropping the last comma if there was one. We could nudge this all in a consistent direction if we just add the trailing commas everywhere once. I omitted a few places where there was a fixed "last" value that will always stay last. I also skipped the header files of libpq and ecpg, in case people want to use those with older compilers. There were also a small number of cases where the enum type wasn't used anywhere (but the enum values were), which ended up confusing pgindent a bit, so I left those alone. Discussion: https://www.postgresql.org/message-id/flat/386f8c45-c8ac-4681-8add-e3b0852c1620%40eisentraut.org
2023-10-03Remove IndexInfo.ii_OpclassOptions fieldPeter Eisentraut
It is unnecessary to include this field in IndexInfo. It is only used by DDL code, not during execution. It is really only used to pass local information around between functions in index.c and indexcmds.c, for which it is clearer to use local variables, like in similar cases. Discussion: https://www.postgresql.org/message-id/flat/f84640e3-00d3-5abd-3f41-e6a19d33c40b@eisentraut.org