Age | Commit message (Collapse) | Author |
|
When planning queries to partitioned tables, we clone all
EquivalenceMembers belonging to the partitioned table into em_is_child
EquivalenceMembers for each non-pruned partition. For partitioned tables
with large numbers of partitions, this meant the ec_members list could
become large and code searching that list would become slow. Effectively,
the more partitions which were present, the more searches needed to be
performed for operations such as find_ec_member_matching_expr() during
create_plan() and the more partitions present, the longer these searches
would take, i.e., a quadratic slowdown.
To fix this, here we adjust how we store EquivalenceMembers for
em_is_child members. Instead of storing these directly in ec_members,
these are now stored in a new array of Lists in the EquivalenceClass,
which is indexed by the relid. When we want to find EquivalenceMembers
belonging to a certain child relation, we can narrow the search to the
array element for that relation.
To make EquivalenceMember lookup easier and to reduce the amount of code
change, this commit provides a pair of functions to allow iteration over
the EquivalenceMembers of an EC which also handles finding the child
members, if required. Callers that never need to look at child members
can remain using the foreach loop over ec_members, which will now often
be faster due to only parent-level members being stored there.
The actual performance increases here are highly dependent on the number
of partitions and the query being planned. Performance increases can be
visible with as few as 8 partitions, but the speedup is marginal for
such low numbers of partitions. The speedups become much more visible
with a few dozen to hundreds of partitions. With some tested queries
using 56 partitions, the planner was around 3x faster than before. For
use cases with thousands of partitions, these are likely to become
significantly faster. Some testing has shown planner speedups of 60x or
more with 8192 partitions.
Author: Yuya Watari <watari.yuya@gmail.com>
Co-authored-by: David Rowley <dgrowleyml@gmail.com>
Reviewed-by: David Rowley <dgrowleyml@gmail.com>
Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
Reviewed-by: Andrey Lepikhov <a.lepikhov@postgrespro.ru>
Reviewed-by: Alena Rybakina <lena.ribackina@yandex.ru>
Reviewed-by: Dmitry Dolgov <9erthalion6@gmail.com>
Reviewed-by: Amit Langote <amitlangote09@gmail.com>
Reviewed-by: Ashutosh Bapat <ashutosh.bapat.oss@gmail.com>
Tested-by: Thom Brown <thom@linux.com>
Tested-by: newtglobal postgresql_contributors <postgresql_contributors@newtglobalcorp.com>
Discussion: https://postgr.es/m/CAJ2pMkZNCgoUKSE%2B_5LthD%2BKbXKvq6h2hQN8Esxpxd%2Bcxmgomg%40mail.gmail.com
|
|
Change the PathKey struct to use CompareType to record the sort
direction instead of hardcoding btree strategy numbers. The
CompareType is then converted to the index-type-specific strategy when
the plan is created.
This reduces the number of places btree strategy numbers are
hardcoded, and it's a self-contained subset of a larger effort to
allow non-btree indexes to behave like btrees.
Author: Mark Dilger <mark.dilger@enterprisedb.com>
Co-authored-by: Peter Eisentraut <peter@eisentraut.org>
Discussion: https://www.postgresql.org/message-id/flat/E72EAA49-354D-4C2E-8EB9-255197F55330@enterprisedb.com
|
|
Derived clauses are stored in ec_derives, a List of RestrictInfos.
These clauses are later looked up by matching the left and right
EquivalenceMembers along with the clause's parent EC.
This linear search becomes expensive in queries with many joins or
partitions, where ec_derives may contain thousands of entries. In
particular, create_join_clause() can spend significant time scanning
this list.
To improve performance, introduce a hash table (ec_derives_hash) that
is built when the list reaches 32 entries -- the same threshold used
for join_rel_hash. The original list is retained alongside the hash
table to support EC merging and serialization
(_outEquivalenceClass()).
Each clause is stored in the hash table using a canonicalized key: the
EquivalenceMember with the lower memory address is placed in the key
before the one with the higher memory address. This avoids storing or
searching for both permutations of the same clause. For clauses
involving a constant EM, the key places NULL in the first slot and the
non-constant EM in the second.
The hash table is initialized using list_length(ec_derives_list) as
the size hint. simplehash internally adjusts this to the next power of
two after dividing by the fillfactor, so this typically results in at
least 64 buckets near the threshold -- avoiding immediate resizing
while adapting to the actual number of entries.
The lookup logic for derived clauses is now centralized in
ec_search_derived_clause_for_ems(), which consults the hash table when
available and falls back to the list otherwise.
The new ec_clear_derived_clauses() always frees ec_derives_list, even
though some of the original code paths that cleared the old
ec_derives field did not. This ensures consistent cleanup and avoids
leaking memory when large lists are discarded.
An assertion originally placed in find_derived_clause_for_ec_member()
is moved into ec_search_derived_clause_for_ems() so that it is
enforced consistently, regardless of whether the hash table or list is
used for lookup.
This design incorporates suggestions by David Rowley, who proposed
both the key canonicalization and the initial sizing approach to
balance memory usage and CPU efficiency.
Author: Ashutosh Bapat <ashutosh.bapat.oss@gmail.com>
Reviewed-by: Amit Langote <amitlangote09@gmail.com>
Reviewed-by: David Rowley <dgrowleyml@gmail.com>
Tested-by: Dmitry Dolgov <9erthalion6@gmail.com>
Tested-by: Alvaro Herrera <alvherre@alvh.no-ip.org>
Tested-by: Amit Langote <amitlangote09@gmail.com>
Tested-by: David Rowley <dgrowleyml@gmail.com>
Discussion: https://postgr.es/m/CAExHW5vZiQtWU6moszLP5iZ8gLX_ZAUbgEX0DxGLx9PGWCtqUg@mail.gmail.com
|
|
The Self-Join Elimination (SJE) feature removes an inner join of a plain
table to itself in the query tree if it is proven that the join can be
replaced with a scan without impacting the query result. Self-join and
inner relation get replaced with the outer in query, equivalence classes,
and planner info structures. Also, the inner restrictlist moves to the
outer one with the removal of duplicated clauses. Thus, this optimization
reduces the length of the range table list (this especially makes sense for
partitioned relations), reduces the number of restriction clauses and,
in turn, selectivity estimations, and potentially improves total planner
prediction for the query.
This feature is dedicated to avoiding redundancy, which can appear after
pull-up transformations or the creation of an EquivalenceClass-derived clause
like the below.
SELECT * FROM t1 WHERE x IN (SELECT t3.x FROM t1 t3);
SELECT * FROM t1 WHERE EXISTS (SELECT t3.x FROM t1 t3 WHERE t3.x = t1.x);
SELECT * FROM t1,t2, t1 t3 WHERE t1.x = t2.x AND t2.x = t3.x;
In the future, we could also reduce redundancy caused by subquery pull-up
after unnecessary outer join removal in cases like the one below.
SELECT * FROM t1 WHERE x IN
(SELECT t3.x FROM t1 t3 LEFT JOIN t2 ON t2.x = t1.x);
Also, it can drastically help to join partitioned tables, removing entries
even before their expansion.
The SJE proof is based on innerrel_is_unique() machinery.
We can remove a self-join when for each outer row:
1. At most, one inner row matches the join clause;
2. Each matched inner row must be (physically) the same as the outer one;
3. Inner and outer rows have the same row mark.
In this patch, we use the next approach to identify a self-join:
1. Collect all merge-joinable join quals which look like a.x = b.x;
2. Add to the list above the baseretrictinfo of the inner table;
3. Check innerrel_is_unique() for the qual list. If it returns false, skip
this pair of joining tables;
4. Check uniqueness, proved by the baserestrictinfo clauses. To prove the
possibility of self-join elimination, the inner and outer clauses must
match exactly.
The relation replacement procedure is not trivial and is partly combined
with the one used to remove useless left joins. Tests covering this feature
were added to join.sql. Some of the existing regression tests changed due
to self-join removal logic.
Discussion: https://postgr.es/m/flat/64486b0b-0404-e39e-322d-0801154901f3%40postgrespro.ru
Author: Andrey Lepikhov <a.lepikhov@postgrespro.ru>
Author: Alexander Kuzmenkov <a.kuzmenkov@postgrespro.ru>
Co-authored-by: Alexander Korotkov <aekorotkov@gmail.com>
Co-authored-by: Alena Rybakina <lena.ribackina@yandex.ru>
Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
Reviewed-by: Robert Haas <robertmhaas@gmail.com>
Reviewed-by: Andres Freund <andres@anarazel.de>
Reviewed-by: Simon Riggs <simon@2ndquadrant.com>
Reviewed-by: Jonathan S. Katz <jkatz@postgresql.org>
Reviewed-by: David Rowley <david.rowley@2ndquadrant.com>
Reviewed-by: Thomas Munro <thomas.munro@enterprisedb.com>
Reviewed-by: Konstantin Knizhnik <k.knizhnik@postgrespro.ru>
Reviewed-by: Heikki Linnakangas <hlinnaka@iki.fi>
Reviewed-by: Hywel Carver <hywel@skillerwhale.com>
Reviewed-by: Laurenz Albe <laurenz.albe@cybertec.at>
Reviewed-by: Ronan Dunklau <ronan.dunklau@aiven.io>
Reviewed-by: vignesh C <vignesh21@gmail.com>
Reviewed-by: Zhihong Yu <zyu@yugabyte.com>
Reviewed-by: Greg Stark <stark@mit.edu>
Reviewed-by: Jaime Casanova <jcasanov@systemguards.com.ec>
Reviewed-by: Michał Kłeczek <michal@kleczek.org>
Reviewed-by: Alena Rybakina <lena.ribackina@yandex.ru>
Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com>
|
|
Backpatch-through: 13
|
|
Up to now, remove_rel_from_query() has done a pretty shoddy job
of updating our where-needed bitmaps (per-Var attr_needed and
per-PlaceHolderVar ph_needed relid sets). It removed direct mentions
of the to-be-removed baserel and outer join, which is the minimum
amount of effort needed to keep the data structures self-consistent.
But it didn't account for the fact that the removed join ON clause
probably mentioned Vars of other relations, and those Vars might now
not be needed as high up in the join tree as before. It's easy to
show cases where this results in failing to remove a lower outer join
that could also have been removed.
To fix, recalculate the where-needed bitmaps from scratch after
each successful join removal. This sounds expensive, but it seems
to add only negligible planner runtime. (We cheat a little bit
by preserving "relation 0" entries in the bitmaps, allowing us to
skip re-scanning the targetlist and HAVING qual.)
The submitted test case drew attention because we had successfully
optimized away the lower join prior to v16. I suspect that that's
somewhat accidental and there are related cases that were never
optimized before and now can be. I've not tried to come up with
one, though.
Perhaps we should back-patch this into v16 and v17 to repair the
performance regression. However, since it took a year for anyone
to notice the problem, it can't be affecting too many people. Let's
let the patch bake awhile in HEAD, and see if we get more complaints.
Per bug #18627 from Mikaël Gourlaouen. No back-patch for now.
Discussion: https://postgr.es/m/18627-44f950eb6a8416c2@postgresql.org
|
|
When generating window_pathkeys, distinct_pathkeys, or sort_pathkeys,
we failed to realize that the grouping/ordering expressions might be
nullable by grouping sets. As a result, we may incorrectly deem that
the PathKeys are redundant by EquivalenceClass processing and thus
remove them from the pathkeys list. That would lead to wrong results
in some cases.
To fix this issue, we mark the grouping expressions nullable by
grouping sets if that is the case. If the grouping expression is a
Var or PlaceHolderVar or constructed from those, we can just add the
RT index of the RTE_GROUP RTE to the existing nullingrels field(s);
otherwise we have to add a PlaceHolderVar to carry on the nullingrel
bit.
However, we have to manually remove this nullingrel bit from
expressions in various cases where these expressions are logically
below the grouping step, such as when we generate groupClause pathkeys
for grouping sets, or when we generate PathTarget for initial input to
grouping nodes.
Furthermore, in set_upper_references, the targetlist and quals of an
Agg node should have nullingrels that include the effects of the
grouping step, ie they will have nullingrels equal to the input
Vars/PHVs' nullingrels plus the nullingrel bit that references the
grouping RTE. In order to perform exact nullingrels matches, we also
need to manually remove this nullingrel bit.
Bump catversion because this changes the querytree produced by the
parser.
Thanks to Tom Lane for the idea to invent a new kind of RTE.
Per reports from Geoff Winkless, Tobias Wendorff, Richard Guo from
various threads.
Author: Richard Guo
Reviewed-by: Ashutosh Bapat, Sutou Kouhei
Discussion: https://postgr.es/m/CAMbWs4_dp7e7oTwaiZeBX8+P1rXw4ThkZxh1QG81rhu9Z47VsQ@mail.gmail.com
|
|
To determine if the two relations being joined can use partitionwise
join, we need to verify the existence of equi-join conditions
involving pairs of matching partition keys for all partition keys.
Currently we do that by looking through the join's restriction
clauses. However, it has been discovered that this approach is
insufficient, because there might be partition keys known equal by a
specific EC, but they do not form a join clause because it happens
that other members of the EC than the partition keys are constrained
to become a join clause.
To address this issue, in addition to examining the join's restriction
clauses, we also check if any partition keys are known equal by ECs,
by leveraging function exprs_known_equal(). To accomplish this, we
enhance exprs_known_equal() to check equality per the semantics of the
opfamily, if provided.
It could be argued that exprs_known_equal() could be called O(N^2)
times, where N is the number of partition key expressions, resulting
in noticeable performance costs if there are a lot of partition key
expressions. But I think this is not a problem. The number of a
joinrel's partition key expressions would only be equal to the join
degree, since each base relation within the join contributes only one
partition key expression. That is to say, it does not scale with the
number of partitions. A benchmark with a query involving 5-way joins
of partitioned tables, each with 3 partition keys and 1000 partitions,
shows that the planning time is not significantly affected by this
patch (within the margin of error), particularly when compared to the
impact caused by partitionwise join.
Thanks to Tom Lane for the idea of leveraging exprs_known_equal() to
check if partition keys are known equal by ECs.
Author: Richard Guo, Tom Lane
Reviewed-by: Tom Lane, Ashutosh Bapat, Robert Haas
Discussion: https://postgr.es/m/CAN_9JTzo_2F5dKLqXVtDX5V6dwqB0Xk+ihstpKEt3a1LT6X78A@mail.gmail.com
|
|
Previously, the code charged disable_cost for CurrentOfExpr, and then
subtracted disable_cost from the cost of a TID path that used
CurrentOfExpr as the TID qual, effectively disabling all paths except
that one. Now, we instead suppress generation of the disabled paths
entirely, and generate only the one that the executor will actually
understand.
With this approach, we do not need to rely on disable_cost being
large enough to prevent the wrong path from being chosen, and we
save some CPU cycle by avoiding generating paths that we can't
actually use. In my opinion, the code is also easier to understand
like this.
Patch by me. Review by Heikki Linnakangas.
Discussion: http://postgr.es/m/591b3596-2ea0-4b8e-99c6-fad0ef2801f5@iki.fi
|
|
0452b461bc made get_eclass_for_sort_expr() always set
EquivalenceClass.ec_sortref if it's not done yet. This leads to an asymmetric
situation when whoever first looks for the EquivalenceClass sets the
ec_sortref. It is also counterintuitive that get_eclass_for_sort_expr()
performs modification of data structures.
This commit makes make_pathkeys_for_sortclauses_extended() responsible for
setting EquivalenceClass.ec_sortref. Now we set the
EquivalenceClass.ec_sortref's needed to explore alternative GROUP BY ordering
specifically during building pathkeys by the list of grouping clauses.
Discussion: https://postgr.es/m/17037754-f187-4138-8285-0e2bfebd0dea%40postgrespro.ru
Reported-by: Tom Lane
Author: Andrei Lepikhov
Reviewed-by: Alexander Korotkov, Pavel Borisov
|
|
This reverts commit 7204f35919b7e021e8d1bc9f2d76fd6bfcdd2070,
thus restoring 66c0185a3 (Allow planner to use Merge Append to
efficiently implement UNION) as well as the follow-on commits
d5d2205c8, 3b1a7eb28, 7487044d6.
Per further discussion on pgsql-release, we wish to ship beta1 with
this feature, and patch the bug that was found just before wrap,
rather than shipping beta1 with the feature reverted.
|
|
This reverts 66c0185a3 (Allow planner to use Merge Append to
efficiently implement UNION) as well as the follow-on commits
d5d2205c8, 3b1a7eb28, 7487044d6. In addition to those, 07746a8ef
had to be removed then re-applied in a different place, because
66c0185a3 moved the relevant code.
The reason for this last-minute thrashing is that depesz found a
case in which the patched code creates a completely wrong plan
that silently gives incorrect query results. It's unclear what
the cause is or how many cases are affected, but with beta1 wrap
staring us in the face, there's no time for closer investigation.
After we figure that out, we can decide whether to un-revert this
for beta2 or hold it for v18.
Discussion: https://postgr.es/m/Zktzf926vslR35Fv@depesz.com
(also some private discussion among pgsql-release)
|
|
This commit reverts d3d55ce5713 and subsequent fixes 2b26a694554, 93c85db3b5b,
b44a1708abe, b7f315c9d7d, 8a8ed916f73, b5fb6736ed3, 0a93f803f45, e0477837ce4,
a7928a57b9f, 5ef34a8fc38, 30b4955a466, 8c441c08279, 028b15405b4, fe093994db4,
489072ab7a9, and 466979ef031.
We are quite late in the release cycle and new bugs continue to appear. Even
though we have fixes for all known bugs, there is a risk of throwing many
bugs to end users.
The plan for self-join elimination would be to do more review and testing,
then re-commit in the early v18 cycle.
Reported-by: Tom Lane
Discussion: https://postgr.es/m/2422119.1714691974%40sss.pgh.pa.us
|
|
This teaches build_child_join_sjinfo() to create the dummy
SpecialJoinInfos (those created for inner joins) directly for a given
child join, skipping the unnecessary overhead of translating the
parent joinrel's SpecialJoinInfo.
To that end, this commit moves the code to initialize the dummy
SpecialJoinInfos to a new function named init_dummy_sjinfo() and
changes the few existing sites that have this code and
build_child_join_sjinfo() to call this new function.
Author: Ashutosh Bapat <ashutosh.bapat.oss@gmail.com>
Reviewed-by: Richard Guo <guofenglinux@gmail.com>
Reviewed-by: Amit Langote <amitlangote09@gmail.com>
Reviewed-by: Andrey Lepikhov <a.lepikhov@postgrespro.ru>
Reviewed-by: Tomas Vondra <tomas.vondra@enterprisedb.com>
Discussion: https://postgr.es/m/CAExHW5tHqEf3ASVqvFFcghYGPfpy7o3xnvhHwBGbJFMRH8KjNw@mail.gmail.com
|
|
Until now, UNION queries have often been suboptimal as the planner has
only ever considered using an Append node and making the results unique
by either using a Hash Aggregate, or by Sorting the entire Append result
and running it through the Unique operator. Both of these methods
always require reading all rows from the union subqueries.
Here we adjust the union planner so that it can request that each subquery
produce results in target list order so that these can be Merge Appended
together and made unique with a Unique node. This can improve performance
significantly as the union child can make use of the likes of btree
indexes and/or Merge Joins to provide the top-level UNION with presorted
input. This is especially good if the top-level UNION contains a LIMIT
node that limits the output rows to a small subset of the unioned rows as
cheap startup plans can be used.
Author: David Rowley
Reviewed-by: Richard Guo, Andy Fan
Discussion: https://postgr.es/m/CAApHDvpb_63XQodmxKUF8vb9M7CxyUyT4sWvEgqeQU-GB7QFoQ@mail.gmail.com
|
|
Author: Cary Huang
Discussion: https://postgr.es/m/18e34071af0.dbfc9663424635.8571906799773344646@highgo.ca
|
|
When evaluating a query with a multi-column GROUP BY clause, we can minimize
sort operations or avoid them if we synchronize the order of GROUP BY clauses
with the ORDER BY sort clause or sort order, which comes from the underlying
query tree. Grouping does not imply any ordering, so we can compare
the keys in arbitrary order, and a Hash Agg leverages this. But for Group Agg,
we simply compared keys in the order specified in the query. This commit
explores alternative ordering of the keys, trying to find a cheaper one.
The ordering of group keys may interact with other parts of the query, some of
which may not be known while planning the grouping. For example, there may be
an explicit ORDER BY clause or some other ordering-dependent operation higher up
in the query, and using the same ordering may allow using either incremental
sort or even eliminating the sort entirely.
The patch always keeps the ordering specified in the query, assuming the user
might have additional insights.
This introduces a new GUC enable_group_by_reordering so that the optimization
may be disabled if needed.
Discussion: https://postgr.es/m/7c79e6a5-8597-74e8-0671-1c39d124c9d6%40sigaev.ru
Author: Andrei Lepikhov, Teodor Sigaev
Reviewed-by: Tomas Vondra, Claudio Freire, Gavin Flower, Dmitry Dolgov
Reviewed-by: Robert Haas, Pavel Borisov, David Rowley, Zhihong Yu
Reviewed-by: Tom Lane, Alexander Korotkov, Richard Guo, Alena Rybakina
|
|
Reported-by: Michael Paquier
Discussion: https://postgr.es/m/ZZKTDPxBBMt3C0J9@paquier.xyz
Backpatch-through: 12
|
|
Since C99, there can be a trailing comma after the last value in an
enum definition. A lot of new code has been introducing this style on
the fly. Some new patches are now taking an inconsistent approach to
this. Some add the last comma on the fly if they add a new last
value, some are trying to preserve the existing style in each place,
some are even dropping the last comma if there was one. We could
nudge this all in a consistent direction if we just add the trailing
commas everywhere once.
I omitted a few places where there was a fixed "last" value that will
always stay last. I also skipped the header files of libpq and ecpg,
in case people want to use those with older compilers. There were
also a small number of cases where the enum type wasn't used anywhere
(but the enum values were), which ended up confusing pgindent a bit,
so I left those alone.
Discussion: https://www.postgresql.org/message-id/flat/386f8c45-c8ac-4681-8add-e3b0852c1620%40eisentraut.org
|
|
The Self Join Elimination (SJE) feature removes an inner join of a plain table
to itself in the query tree if is proved that the join can be replaced with
a scan without impacting the query result. Self join and inner relation are
replaced with the outer in query, equivalence classes, and planner info
structures. Also, inner restrictlist moves to the outer one with removing
duplicated clauses. Thus, this optimization reduces the length of the range
table list (this especially makes sense for partitioned relations), reduces
the number of restriction clauses === selectivity estimations, and potentially
can improve total planner prediction for the query.
The SJE proof is based on innerrel_is_unique machinery.
We can remove a self-join when for each outer row:
1. At most one inner row matches the join clause.
2. Each matched inner row must be (physically) the same row as the outer one.
In this patch we use the next approach to identify a self-join:
1. Collect all merge-joinable join quals which look like a.x = b.x
2. Add to the list above the baseretrictinfo of the inner table.
3. Check innerrel_is_unique() for the qual list. If it returns false, skip
this pair of joining tables.
4. Check uniqueness, proved by the baserestrictinfo clauses. To prove
the possibility of self-join elimination inner and outer clauses must have
an exact match.
The relation replacement procedure is not trivial and it is partly combined
with the one, used to remove useless left joins. Tests, covering this feature,
were added to join.sql. Some regression tests changed due to self-join removal
logic.
Discussion: https://postgr.es/m/flat/64486b0b-0404-e39e-322d-0801154901f3%40postgrespro.ru
Author: Andrey Lepikhov, Alexander Kuzmenkov
Reviewed-by: Tom Lane, Robert Haas, Andres Freund, Simon Riggs, Jonathan S. Katz
Reviewed-by: David Rowley, Thomas Munro, Konstantin Knizhnik, Heikki Linnakangas
Reviewed-by: Hywel Carver, Laurenz Albe, Ronan Dunklau, vignesh C, Zhihong Yu
Reviewed-by: Greg Stark, Jaime Casanova, Michał Kłeczek, Alena Rybakina
Reviewed-by: Alexander Korotkov
|
|
Going by c4a1933b4, b33ef397a and 05893712c (to name just a few), it seems
that maintaining debug_print_rel() is often forgotten. In the case of
c4a1933b4, it was several years before anyone noticed that a path type
was not handled by debug_print_rel(). (debug_print_rel() is only
compiled when building with OPTIMIZER_DEBUG).
After a quick survey on the pgsql-hackers mailing list, nobody came
forward to admit that they use OPTIMIZER_DEBUG. So to prevent any future
maintenance neglect, let's just remove debug_print_rel() and have
OPTIMIZER_DEBUG make use of pprint() instead (as suggested by Tom Lane).
If anyone wants to come forward to claim they make use of
OPTIMIZER_DEBUG in a way that they need debug_print_rel() then they have
around 10 months remaining in the v17 cycle where we could revert this.
If nobody comes forward in that time, then we can likely safely declare
debug_print_rel() as not worth keeping.
Discussion: https://postgr.es/m/CAApHDvoCdjo8Cu2zEZF4-AxWG-90S+pYXAnoDDa9J3xH-OrczQ@mail.gmail.com
|
|
After applying outer-join identity 3 in the forward direction,
it was possible for the planner to mistakenly apply a qual clause
from above the two outer joins at the now-lower join level.
This can give the wrong answer, since a value that would get nulled
by the now-upper join might not yet be null.
To fix, when we perform such a transformation, consider that the
now-lower join hasn't really completed the outer join it's nominally
responsible for and thus its relid set should not include that OJ's
relid (nor should its output Vars have that nullingrel bit set).
Instead we add those bits when the now-upper join is performed.
The existing rules for qual placement then suffice to prevent
higher qual clauses from dropping below the now-upper join.
There are a few complications from needing to consider transitive
closures in case multiple pushdowns have happened, but all in all
it's not a very complex patch.
This is all new logic (from 2489d76c4) so no need to back-patch.
The added test cases all have the same results as in v15.
Tom Lane and Richard Guo
Discussion: https://postgr.es/m/0b819232-4b50-f245-1c7d-c8c61bf41827@postgrespro.ru
|
|
It's possible, in admittedly-rather-contrived cases, for an eclass
to generate a derived "join" qual that constrains the post-outer-join
value(s) of some RHS variable(s) without mentioning the LHS at all.
While the mechanisms were set up to work for this, we fell foul of
the "get_common_eclass_indexes" filter installed by commit 3373c7155:
it could decide that such an eclass wasn't relevant to the join, so
that the required qual clause wouldn't get emitted there or anywhere
else.
To fix, apply get_common_eclass_indexes only at inner joins, where
its rule is still valid. At an outer join, fall back to examining all
eclasses that mention either input (or the OJ relid, though it should
be impossible for an eclass to mention that without mentioning either
input). Perhaps we can improve on that later, but the cost/benefit of
adding more complexity to skip some irrelevant eclasses is dubious.
To allow cheaply distinguishing outer from inner joins, pass the
ojrelid to generate_join_implied_equalities as a separate argument.
This also allows cleaning up some sloppiness that had crept into
the definition of its join_relids argument, and it allows accurate
calculation of nominal_join_relids for a child outer join. (The
latter oversight seems not to have been a live bug, but it certainly
could have caused problems in future.)
Also fix what might be a live bug in check_index_predicates: it was
being sloppy about what it passed to generate_join_implied_equalities.
Per report from Richard Guo.
Discussion: https://postgr.es/m/CAMbWs4-DsTBfOvXuw64GdFss2=M5cwtEhY=0DCS7t2gT7P6hSA@mail.gmail.com
|
|
EquivalenceClasses are now understood as applying within a "join
domain", which is a set of inner-joined relations (possibly underneath
an outer join). We no longer need to treat an EC from below an outer
join as a second-class citizen.
I have hopes of eventually being able to treat outer-join clauses via
EquivalenceClasses, by means of only applying deductions within the
EC's join domain. There are still problems in the way of that, though,
so for now the reconsider_outer_join_clause logic is still here.
I haven't been able to get rid of RestrictInfo.is_pushed_down either,
but I wonder if that could be recast using JoinDomains.
I had to hack one test case in postgres_fdw.sql to make it still test
what it was meant to, because postgres_fdw is inconsistent about
how it deals with quals containing non-shippable expressions; see
https://postgr.es/m/1691374.1671659838@sss.pgh.pa.us. That should
be improved, but I don't think it's within the scope of this patch
series.
Patch by me; thanks to Richard Guo for review.
Discussion: https://postgr.es/m/830269.1656693747@sss.pgh.pa.us
|
|
Remove RestrictInfo.nullable_relids, along with a good deal of
infrastructure that calculated it. One use-case for it was in
join_clause_is_movable_to, but we can now replace that usage with
a check to see if the clause's relids include any outer join
that can null the target relation. The other use-case was in
join_clause_is_movable_into, but that test can just be dropped
entirely now that the clause's relids include outer joins.
Furthermore, join_clause_is_movable_into should now be
accurate enough that it will accept anything returned by
generate_join_implied_equalities, so we can restore the Assert
that was diked out in commit 95f4e59c3.
Remove the outerjoin_delayed mechanism. We needed this before to
prevent quals from getting evaluated below outer joins that should
null some of their vars. Now that we consider varnullingrels while
placing quals, that's taken care of automatically, so throw the
whole thing away.
Teach remove_useless_result_rtes to also remove useless FromExprs.
Having done that, the delay_upper_joins flag serves no purpose any
more and we can remove it, largely reverting 11086f2f2.
Use constant TRUE for "dummy" clauses when throwing back outer joins.
This improves on a hack I introduced in commit 6a6522529. If we
have a left-join clause l.x = r.y, and a WHERE clause l.x = constant,
we generate r.y = constant and then don't really have a need for the
join clause. But we must throw the join clause back anyway after
marking it redundant, so that the join search heuristics won't think
this is a clauseless join and avoid it. That was a kluge introduced
under time pressure, and after looking at it I thought of a better
way: let's just introduce constant-TRUE "join clauses" instead,
and get rid of them at the end. This improves the generated plans for
such cases by not having to test a redundant join clause. We can also
get rid of the ugly hack used to mark such clauses as redundant for
selectivity estimation.
Patch by me; thanks to Richard Guo for review.
Discussion: https://postgr.es/m/830269.1656693747@sss.pgh.pa.us
|
|
Avoid explicitly grouping by columns that we know are redundant
for sorting, for example we need group by only one of x and y in
SELECT ... WHERE x = y GROUP BY x, y
This comes up more often than you might think, as shown by the
changes in the regression tests. It's nearly free to detect too,
since we are just piggybacking on the existing logic that detects
redundant pathkeys. (In some of the existing plans that change,
it's visible that a sort step preceding the grouping step already
didn't bother to sort by the redundant column, making the old plan
a bit silly-looking.)
To do this, build processed_groupClause and processed_distinctClause
lists that omit any provably-redundant sort items, and consult those
not the originals where relevant. This means that within the
planner, one should usually consult root->processed_groupClause or
root->processed_distinctClause if one wants to know which columns
are to be grouped on; but to check whether grouping or distinct-ing
is happening at all, check non-NIL-ness of parse->groupClause or
parse->distinctClause. This is comparable to longstanding rules
about handling the HAVING clause, so I don't think it'll be a huge
maintenance problem.
nodeAgg.c also needs minor mods, because it's now possible to generate
AGG_PLAIN and AGG_SORTED Agg nodes with zero grouping columns.
Patch by me; thanks to Richard Guo and David Rowley for review.
Discussion: https://postgr.es/m/185315.1672179489@sss.pgh.pa.us
|
|
Backpatch-through: 11
|
|
This reverts commit db0d67db2401eb6238ccc04c6407a4fd4f985832 and
several follow-on fixes. The idea of making a cost-based choice
of the order of the sorting columns is not fundamentally unsound,
but it requires cost information and data statistics that we don't
really have. For example, relying on procost to distinguish the
relative costs of different sort comparators is pretty pointless
so long as most such comparator functions are labeled with cost 1.0.
Moreover, estimating the number of comparisons done by Quicksort
requires more than just an estimate of the number of distinct values
in the input: you also need some idea of the sizes of the larger
groups, if you want an estimate that's good to better than a factor of
three or so. That's data that's often unknown or not very reliable.
Worse, to arrive at estimates of the number of calls made to the
lower-order-column comparison functions, the code needs to make
estimates of the numbers of distinct values of multiple columns,
which are necessarily even less trustworthy than per-column stats.
Even if all the inputs are perfectly reliable, the cost algorithm
as-implemented cannot offer useful information about how to order
sorting columns beyond the point at which the average group size
is estimated to drop to 1.
Close inspection of the code added by db0d67db2 shows that there
are also multiple small bugs. These could have been fixed, but
there's not much point if we don't trust the estimates to be
accurate in-principle.
Finally, the changes in cost_sort's behavior made for very large
changes (often a factor of 2 or so) in the cost estimates for all
sorting operations, not only those for multi-column GROUP BY.
That naturally changes plan choices in many situations, and there's
precious little evidence to show that the changes are for the better.
Given the above doubts about whether the new estimates are really
trustworthy, it's hard to summon much confidence that these changes
are better on the average.
Since we're hard up against the release deadline for v15, let's
revert these changes for now. We can always try again later.
Note: in v15, I left T_PathKeyInfo in place in nodes.h even though
it's unreferenced. Removing it would be an ABI break, and it seems
a bit late in the release cycle for that.
Discussion: https://postgr.es/m/TYAPR01MB586665EB5FB2C3807E893941F5579@TYAPR01MB5866.jpnprd01.prod.outlook.com
|
|
Make sure that function declarations use names that exactly match the
corresponding names from function definitions in optimizer, parser,
utility, libpq, and "commands" code, as well as in remaining library
code. Do the same for all code related to frontend programs (with the
exception of pg_dump/pg_dumpall related code).
Like other recent commits that cleaned up function parameter names, this
commit was written with help from clang-tidy. Later commits will handle
ecpg and pg_dump/pg_dumpall.
Author: Peter Geoghegan <pg@bowt.ie>
Reviewed-By: David Rowley <dgrowleyml@gmail.com>
Discussion: https://postgr.es/m/CAH2-WznJt9CMM9KJTMjJh_zbL5hD9oX44qdJ4aqZtjFi-zA3Tg@mail.gmail.com
|
|
ORDER BY / DISTINCT aggreagtes have, since implemented in Postgres, been
executed by always performing a sort in nodeAgg.c to sort the tuples in
the current group into the correct order before calling the transition
function on the sorted tuples. This was not great as often there might be
an index that could have provided pre-sorted input and allowed the
transition functions to be called as the rows come in, rather than having
to store them in a tuplestore in order to sort them once all the tuples
for the group have arrived.
Here we change the planner so it requests a path with a sort order which
supports the most amount of ORDER BY / DISTINCT aggregate functions and
add new code to the executor to allow it to support the processing of
ORDER BY / DISTINCT aggregates where the tuples are already sorted in the
correct order.
Since there can be many ORDER BY / DISTINCT aggregates in any given query
level, it's very possible that we can't find an order that suits all of
these aggregates. The sort order that the planner chooses is simply the
one that suits the most aggregate functions. We take the most strictly
sorted variation of each order and see how many aggregate functions can
use that, then we try again with the order of the remaining aggregates to
see if another order would suit more aggregate functions. For example:
SELECT agg(a ORDER BY a),agg2(a ORDER BY a,b) ...
would request the sort order to be {a, b} because {a} is a subset of the
sort order of {a,b}, but;
SELECT agg(a ORDER BY a),agg2(a ORDER BY c) ...
would just pick a plan ordered by {a} (we give precedence to aggregates
which are earlier in the targetlist).
SELECT agg(a ORDER BY a),agg2(a ORDER BY b),agg3(a ORDER BY b) ...
would choose to order by {b} since two aggregates suit that vs just one
that requires input ordered by {a}.
Author: David Rowley
Reviewed-by: Ronan Dunklau, James Coleman, Ranier Vilela, Richard Guo, Tom Lane
Discussion: https://postgr.es/m/CAApHDvpHzfo92%3DR4W0%2BxVua3BUYCKMckWAmo-2t_KiXN-wYH%3Dw%40mail.gmail.com
|
|
Noticed while working in this area. This code was introduced in PG15,
which is still in beta, so backpatch to there for consistency.
Backpatch-through: 15
|
|
Run pgindent, pgperltidy, and reformat-dat-files.
I manually fixed a couple of comments that pgindent uglified.
|
|
postgres_fdw would push ORDER BY clauses to the remote side without
verifying that the sort operator is safe to ship. Moreover, it failed
to print a suitable USING clause if the sort operator isn't default
for the sort expression's type. The net result of this is that the
remote sort might not have anywhere near the semantics we expect,
which'd be disastrous for locally-performed merge joins in particular.
We addressed similar issues in the context of ORDER BY within an
aggregate function call in commit 7012b132d, but failed to notice
that query-level ORDER BY was broken. Thus, much of the necessary
logic already existed, but it requires refactoring to be usable
in both cases.
Back-patch to all supported branches. In HEAD only, remove the
core code's copy of find_em_expr_for_rel, which is no longer used
and really should never have been pushed into equivclass.c in the
first place.
Ronan Dunklau, per report from David Rowley;
reviews by David Rowley, Ranier Vilela, and myself
Discussion: https://postgr.es/m/CAApHDvr4OeC2DBVY--zVP83-K=bYrTD7F8SZDhN4g+pj2f2S-A@mail.gmail.com
|
|
When evaluating a query with a multi-column GROUP BY clause using sort,
the cost may be heavily dependent on the order in which the keys are
compared when building the groups. Grouping does not imply any ordering,
so we're allowed to compare the keys in arbitrary order, and a Hash Agg
leverages this. But for Group Agg, we simply compared keys in the order
as specified in the query. This commit explores alternative ordering of
the keys, trying to find a cheaper one.
In principle, we might generate grouping paths for all permutations of
the keys, and leave the rest to the optimizer. But that might get very
expensive, so we try to pick only a couple interesting orderings based
on both local and global information.
When planning the grouping path, we explore statistics (number of
distinct values, cost of the comparison function) for the keys and
reorder them to minimize comparison costs. Intuitively, it may be better
to perform more expensive comparisons (for complex data types etc.)
last, because maybe the cheaper comparisons will be enough. Similarly,
the higher the cardinality of a key, the lower the probability we’ll
need to compare more keys. The patch generates and costs various
orderings, picking the cheapest ones.
The ordering of group keys may interact with other parts of the query,
some of which may not be known while planning the grouping. E.g. there
may be an explicit ORDER BY clause, or some other ordering-dependent
operation, higher up in the query, and using the same ordering may allow
using either incremental sort or even eliminate the sort entirely.
The patch generates orderings and picks those minimizing the comparison
cost (for various pathkeys), and then adds orderings that might be
useful for operations higher up in the plan (ORDER BY, etc.). Finally,
it always keeps the ordering specified in the query, on the assumption
the user might have additional insights.
This introduces a new GUC enable_group_by_reordering, so that the
optimization may be disabled if needed.
The original patch was proposed by Teodor Sigaev, and later improved and
reworked by Dmitry Dolgov. Reviews by a number of people, including me,
Andrey Lepikhov, Claudio Freire, Ibrar Ahmed and Zhihong Yu.
Author: Dmitry Dolgov, Teodor Sigaev, Tomas Vondra
Reviewed-by: Tomas Vondra, Andrey Lepikhov, Claudio Freire, Ibrar Ahmed, Zhihong Yu
Discussion: https://postgr.es/m/7c79e6a5-8597-74e8-0671-1c39d124c9d6%40sigaev.ru
Discussion: https://postgr.es/m/CA%2Bq6zcW_4o2NC0zutLkOJPsFt80megSpX_dVRo6GK9PC-Jx_Ag%40mail.gmail.com
|
|
Backpatch-through: 10
|
|
I didn't particularly like this function name, as it fails to
express what's going on. Also, returning the sort expression
alone isn't too helpful --- typically, a caller would also
need some other fields of the EquivalenceMember. But the
sole caller really only needs a bool result, so let's make
it "bool relation_can_be_sorted_early()".
Discussion: https://postgr.es/m/91f3ec99-85a4-fa55-ea74-33f85a5c651f@swarm64.com
|
|
An oversight introduced by the incremental-sort patches caused
"could not find pathkey item to sort" errors in some situations
where a sort key involves an aggregate or window function.
The basic problem here is that find_em_expr_usable_for_sorting_rel
isn't properly modeling what prepare_sort_from_pathkeys will do
later. Rather than hoping we can keep those functions in sync,
let's refactor so that they actually share the code for
identifying a suitable sort expression.
With this refactoring, tlist.c's tlist_member_ignore_relabel
is unused. I removed it in HEAD but left it in place in v13,
in case any extensions are using it.
Per report from Luc Vlaming. Back-patch to v13 where the
problem arose.
James Coleman and Tom Lane
Discussion: https://postgr.es/m/91f3ec99-85a4-fa55-ea74-33f85a5c651f@swarm64.com
|
|
Previously, pull_varnos() took the relids of a PlaceHolderVar as being
equal to the relids in its contents, but that fails to account for the
possibility that we have to postpone evaluation of the PHV due to outer
joins. This could result in a malformed plan. The known cases end up
triggering the "failed to assign all NestLoopParams to plan nodes"
sanity check in createplan.c, but other symptoms may be possible.
The right value to use is the join level we actually intend to evaluate
the PHV at. We can get that from the ph_eval_at field of the associated
PlaceHolderInfo. However, there are some places that call pull_varnos()
before the PlaceHolderInfos have been created; in that case, fall back
to the conservative assumption that the PHV will be evaluated at its
syntactic level. (In principle this might result in missing some legal
optimization, but I'm not aware of any cases where it's an issue in
practice.) Things are also a bit ticklish for calls occurring during
deconstruct_jointree(), but AFAICS the ph_eval_at fields should have
reached their final values by the time we need them.
The main problem in making this work is that pull_varnos() has no
way to get at the PlaceHolderInfos. We can fix that easily, if a
bit tediously, in HEAD by passing it the planner "root" pointer.
In the back branches that'd cause an unacceptable API/ABI break for
extensions, so leave the existing entry points alone and add new ones
with the additional parameter. (If an old entry point is called and
encounters a PHV, it'll fall back to using the syntactic level,
again possibly missing some valid optimization.)
Back-patch to v12. The computation is surely also wrong before that,
but it appears that we cannot reach a bad plan thanks to join order
restrictions imposed on the subquery that the PlaceHolderVar came from.
The error only became reachable when commit 4be058fe9 allowed trivial
subqueries to be collapsed out completely, eliminating their join order
restrictions.
Per report from Stephan Springl.
Discussion: https://postgr.es/m/171041.1610849523@sss.pgh.pa.us
|
|
Backpatch-through: 9.5
|
|
Commit ebb7ae839d ensured we ignore pathkeys with volatile expressions
when considering adding a sort below a Gather Merge. Turns out we need
to care about parallel safety of the pathkeys too, otherwise we might
try sorting e.g. on results of a correlated subquery (as demonstrated
by a report from Luis Roberto).
Initial investigation by Tom Lane, patch by James Coleman. Backpatch
to 13, where the code was instroduced (as part of Incremental Sort).
Reported-by: Luis Roberto
Author: James Coleman
Reviewed-by: Tomas Vondra
Backpatch-through: 13
Discussion: https://postgr.es/m/622580997.37108180.1604080457319.JavaMail.zimbra%40siscobra.com.br
Discussion: https://postgr.es/m/CAAaqYe8cK3g5CfLC4w7bs=hC0mSksZC=H5M8LSchj5e5OxpTAg@mail.gmail.com
|
|
When considering Incremental Sort below a Gather Merge, we need to be
a bit more careful when matching pathkeys to EC members. It's not enough
to find a member whose Vars are all in the current relation's target;
volatile expressions in particular need to be contained in the target,
otherwise it's too early to use the pathkey.
Reported-by: Jaime Casanova
Author: James Coleman
Reviewed-by: Tomas Vondra
Backpatch-through: 13, where the incremental sort code was added
Discussion: https://postgr.es/m/CAJGNTeNaxpXgBVcRhJX%2B2vSbq%2BF2kJqGBcvompmpvXb7pq%2BoFA%40mail.gmail.com
|
|
get_foreign_key_join_selectivity() looks for join clauses that equate
the two sides of the FK constraint. However, if we have a query like
"WHERE fktab.a = pktab.a and fktab.a = 1", it won't find any such join
clause, because equivclass.c replaces the given clauses with "fktab.a
= 1 and pktab.a = 1", which can be enforced at the scan level, leaving
nothing to be done for column "a" at the join level.
We can fix that expectation without much trouble, but then a new problem
arises: applying the foreign-key-based selectivity rule produces a
rowcount underestimate, because we're effectively double-counting the
selectivity of the "fktab.a = 1" clause. So we have to cancel that
selectivity out of the estimate.
To fix, refactor process_implied_equality() so that it can pass back the
new RestrictInfo to its callers in equivclass.c, allowing the generated
"fktab.a = 1" clause to be saved in the EquivalenceClass's ec_derives
list. Then it's not much trouble to dig out the relevant RestrictInfo
when we need to adjust an FK selectivity estimate. (While at it, we
can also remove the expensive use of initialize_mergeclause_eclasses()
to set up the new RestrictInfo's left_ec and right_ec pointers.
The equivclass.c code can set those basically for free.)
This seems like clearly a bug fix, but I'm hesitant to back-patch it,
first because there's some API/ABI risk for extensions and second because
we're usually loath to destabilize plan choices in stable branches.
Per report from Sigrid Ehrenreich.
Discussion: https://postgr.es/m/1019549.1603770457@sss.pgh.pa.us
Discussion: https://postgr.es/m/AM6PR02MB5287A0ADD936C1FA80973E72AB190@AM6PR02MB5287.eurprd02.prod.outlook.com
|
|
Commit d2d8a229bc introduced Incremental Sort, but it was considered
only in create_ordered_paths() as an alternative to regular Sort. There
are many other places that require sorted input and might benefit from
considering Incremental Sort too.
This patch modifies a number of those places, but not all. The concern
is that just adding Incremental Sort to any place that already adds
Sort may increase the number of paths considered, negatively affecting
planning time, without any benefit. So we've taken a more conservative
approach, based on analysis of which places do affect a set of queries
that did seem practical. This means some less common queries may not
benefit from Incremental Sort yet.
Author: Tomas Vondra
Reviewed-by: James Coleman
Discussion: https://postgr.es/m/CAPpHfds1waRZ=NOmueYq0sx1ZSCnt+5QJvizT8ndT2=etZEeAQ@mail.gmail.com
|
|
Incremental Sort is an optimized variant of multikey sort for cases when
the input is already sorted by a prefix of the requested sort keys. For
example when the relation is already sorted by (key1, key2) and we need
to sort it by (key1, key2, key3) we can simply split the input rows into
groups having equal values in (key1, key2), and only sort/compare the
remaining column key3.
This has a number of benefits:
- Reduced memory consumption, because only a single group (determined by
values in the sorted prefix) needs to be kept in memory. This may also
eliminate the need to spill to disk.
- Lower startup cost, because Incremental Sort produce results after each
prefix group, which is beneficial for plans where startup cost matters
(like for example queries with LIMIT clause).
We consider both Sort and Incremental Sort, and decide based on costing.
The implemented algorithm operates in two different modes:
- Fetching a minimum number of tuples without check of equality on the
prefix keys, and sorting on all columns when safe.
- Fetching all tuples for a single prefix group and then sorting by
comparing only the remaining (non-prefix) keys.
We always start in the first mode, and employ a heuristic to switch into
the second mode if we believe it's beneficial - the goal is to minimize
the number of unnecessary comparions while keeping memory consumption
below work_mem.
This is a very old patch series. The idea was originally proposed by
Alexander Korotkov back in 2013, and then revived in 2017. In 2018 the
patch was taken over by James Coleman, who wrote and rewrote most of the
current code.
There were many reviewers/contributors since 2013 - I've done my best to
pick the most active ones, and listed them in this commit message.
Author: James Coleman, Alexander Korotkov
Reviewed-by: Tomas Vondra, Andreas Karlsson, Marti Raudsepp, Peter Geoghegan, Robert Haas, Thomas Munro, Antonin Houska, Andres Freund, Alexander Kuzmenkov
Discussion: https://postgr.es/m/CAPpHfdscOX5an71nHd8WSUH6GNOCf=V7wgDaTXdDd9=goN-gfA@mail.gmail.com
Discussion: https://postgr.es/m/CAPpHfds1waRZ=NOmueYq0sx1ZSCnt+5QJvizT8ndT2=etZEeAQ@mail.gmail.com
|
|
Move have_partkey_equi_join and match_expr_to_partition_keys to
relnode.c, since they're used only there. Refactor
build_joinrel_partition_info to split out the code that fills the
joinrel's partition key lists; this doesn't have any non-cosmetic
impact, but it seems like a useful separation of concerns.
Improve assorted nearby comments.
Amit Langote, with a little further editorialization by me
Discussion: https://postgr.es/m/CA+HiwqG2WVUGmLJqtR0tPFhniO=H=9qQ+Z3L_ZC+Y3-EVQHFGg@mail.gmail.com
|
|
Backpatch-through: update all files in master, backpatch legal files through 9.4
|
|
Commit d25ea0127 got rid of what I thought were entirely unnecessary
derived child expressions in EquivalenceClasses for EC members that
mention multiple baserels. But it turns out that some of the child
expressions that code created are necessary for partitionwise joins,
else we fail to find matching pathkeys for Sort nodes. (This happens
only for certain shapes of the resulting plan; it may be that
partitionwise aggregation is also necessary to show the failure,
though I'm not sure of that.)
Reverting that commit entirely would be quite painful performance-wise
for large partition sets. So instead, add code that explicitly
generates child expressions that match only partitionwise child join
rels we have actually generated.
Per report from Justin Pryzby. (Amit Langote noticed the problem
earlier, though it's not clear if he recognized then that it could
result in a planner error, not merely failure to exploit partitionwise
join, in the code as-committed.) Back-patch to v12 where commit
d25ea0127 came in.
Amit Langote, with lots of kibitzing from me
Discussion: https://postgr.es/m/CA+HiwqG2WVUGmLJqtR0tPFhniO=H=9qQ+Z3L_ZC+Y3-EVQHFGg@mail.gmail.com
Discussion: https://postgr.es/m/20191011143703.GN10470@telsasoft.com
|
|
Switch to 2.1 version of pg_bsd_indent. This formats
multiline function declarations "correctly", that is with
additional lines of parameter declarations indented to match
where the first line's left parenthesis is.
Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
|
|
If we need ordered output from a scan of a partitioned table, but
the ordering matches the partition ordering, then we don't need to
use a MergeAppend to combine the pre-ordered per-partition scan
results: a plain Append will produce the same results. This
both saves useless comparison work inside the MergeAppend proper,
and allows us to start returning tuples after istarting up just
the first child node not all of them.
However, all is not peaches and cream, because if some of the
child nodes have high startup costs then there will be big
discontinuities in the tuples-returned-versus-elapsed-time curve.
The planner's cost model cannot handle that (yet, anyway).
If we model the Append's startup cost as being just the first
child's startup cost, we may drastically underestimate the cost
of fetching slightly more tuples than are available from the first
child. Since we've had bad experiences with over-optimistic choices
of "fast start" plans for ORDER BY LIMIT queries, that seems scary.
As a klugy workaround, set the startup cost estimate for an ordered
Append to be the sum of its children's startup costs (as MergeAppend
would). This doesn't really describe reality, but it's less likely
to cause a bad plan choice than an underestimated startup cost would.
In practice, the cases where we really care about this optimization
will have child plans that are IndexScans with zero startup cost,
so that the overly conservative estimate is still just zero.
David Rowley, reviewed by Julien Rouhaud and Antonin Houska
Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
|
|
When we introduced separate ProjectSetPath nodes for application of
set-returning functions in v10, we inadvertently broke some cases where
we're supposed to recognize that the result of a subquery is known to be
empty (contain zero rows). That's because IS_DUMMY_REL was just looking
for a childless AppendPath without allowing for a ProjectSetPath being
possibly stuck on top. In itself, this didn't do anything much worse
than produce slightly worse plans for some corner cases.
Then in v11, commit 11cf92f6e rearranged things to allow the scan/join
targetlist to be applied directly to partial paths before they get
gathered. But it inserted a short-circuit path for dummy relations
that was a little too short: it failed to insert a ProjectSetPath node
at all for a targetlist containing set-returning functions, resulting in
bogus "set-valued function called in context that cannot accept a set"
errors, as reported in bug #15669 from Madelaine Thibaut.
The best way to fix this mess seems to be to reimplement IS_DUMMY_REL
so that it drills down through any ProjectSetPath nodes that might be
there (and it seems like we'd better allow for ProjectionPath as well).
While we're at it, make it look at rel->pathlist not cheapest_total_path,
so that it gives the right answer independently of whether set_cheapest
has been done lately. That dependency looks pretty shaky in the context
of code like apply_scanjoin_target_to_paths, and even if it's not broken
today it'd certainly bite us at some point. (Nastily, unsafe use of the
old coding would almost always work; the hazard comes down to possibly
looking through a dangling pointer, and only once in a blue moon would
you find something there that resulted in the wrong answer.)
It now looks like it was a mistake for IS_DUMMY_REL to be a macro: if
there are any extensions using it, they'll continue to use the old
inadequate logic until they're recompiled, after which they'll fail
to load into server versions predating this fix. Hopefully there are
few such extensions.
Having fixed IS_DUMMY_REL, the special path for dummy rels in
apply_scanjoin_target_to_paths is unnecessary as well as being wrong,
so we can just drop it.
Also change a few places that were testing for partitioned-ness of a
planner relation but not using IS_PARTITIONED_REL for the purpose; that
seems unsafe as well as inconsistent, plus it required an ugly hack in
apply_scanjoin_target_to_paths.
In passing, save a few cycles in apply_scanjoin_target_to_paths by
skipping processing of pre-existing paths for partitioned rels,
and do some cosmetic cleanup and comment adjustment in that function.
I renamed IS_DUMMY_PATH to IS_DUMMY_APPEND with the intention of breaking
any code that might be using it, since in almost every case that would
be wrong; IS_DUMMY_REL is what to be using instead.
In HEAD, also make set_dummy_rel_pathlist static (since it's no longer
used from outside allpaths.c), and delete is_dummy_plan, since it's no
longer used anywhere.
Back-patch as appropriate into v11 and v10.
Tom Lane and Julien Rouhaud
Discussion: https://postgr.es/m/15669-02fb3296cca26203@postgresql.org
|