1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"><html><head>
<link type="text/css" rel="stylesheet" href="tsearch2-ref_files/tsearch.txt"><title>tsearch2 reference</title></head>
<body>
<h1 align="center">The tsearch2 Reference</h1>
<p align="center">
Brandon Craig Rhodes<br>30 June 2003 (edited by Oleg Bartunov, 2 Aug 2003).
</p><p>
This Reference documents the user types and functions
of the tsearch2 module for PostgreSQL.
An introduction to the module is provided
by the <a href="http://www.sai.msu.su/%7Emegera/postgres/gist/tsearch/V2/docs/tsearch2-guide.html">tsearch2 Guide</a>,
a companion document to this one.
You can retrieve a beta copy of the tsearch2 module from the
<a href="http://www.sai.msu.su/%7Emegera/postgres/gist/">GiST for PostgreSQL</a>
page -- look under the section entitled <i>Development History</i>
for the current version.
</p><h2><a name="vq">Vectors and Queries</a></h2>
<a name="vq">Vectors and queries both store lexemes,
but for different purposes.
A <tt>tsvector</tt> stores the lexemes
of the words that are parsed out of a document,
and can also remember the position of each word.
A <tt>tsquery</tt> specifies a boolean condition among lexemes.
</a><p>
<a name="vq">Any of the following functions with a <tt><i>configuration</i></tt> argument
can use either an integer <tt>id</tt> or textual <tt>ts_name</tt>
to select a configuration;
if the option is omitted, then the current configuration is used.
For more information on the current configuration,
read the next section on Configurations.
</a></p><h3><a name="vq">Vector Operations</a></h3>
<dl><dt>
<a name="vq"> <tt>to_tsvector( <em>[</em><i>configuration</i>,<em>]</em>
<i>document</i> TEXT) RETURNS tsvector</tt>
</a></dt><dd>
<a name="vq"> Parses a document into tokens,
reduces the tokens to lexemes,
and returns a <tt>tsvector</tt> which lists the lexemes
together with their positions in the document.
For the best description of this process,
see the section on </a><a href="http://www.sai.msu.su/%7Emegera/postgres/gist/tsearch/V2/docs/tsearch2-guide.html#ps">Parsing and Stemming</a>
in the accompanying tsearch2 Guide.
</dd><dt>
<tt>strip(<i>vector</i> tsvector) RETURNS tsvector</tt>
</dt><dd>
Return a vector which lists the same lexemes
as the given <tt><i>vector</i></tt>,
but which lacks any information
about where in the document each lexeme appeared.
While the returned vector is thus useless for relevance ranking,
it will usually be much smaller.
</dd><dt>
<tt>setweight(<i>vector</i> tsvector, <i>letter</i>) RETURNS tsvector</tt>
</dt><dd>
This function returns a copy of the input vector
in which every location has been labelled
with either the <tt><i>letter</i></tt>
<tt>'A'</tt>, <tt>'B'</tt>, or <tt>'C'</tt>,
or the default label <tt>'D'</tt>
(which is the default with which new vectors are created,
and as such is usually not displayed).
These labels are retained when vectors are concatenated,
allowing words from different parts of a document
to be weighted differently by ranking functions.
</dd><dt>
<tt><i>vector1</i> || <i>vector2</i></tt>
</dt><dt class="br">
<tt>concat(<i>vector1</i> tsvector, <i>vector2</i> tsvector)
RETURNS tsvector</tt>
</dt><dd>
Returns a vector which combines the lexemes and position information
in the two vectors given as arguments.
Position weight labels (described in the previous paragraph)
are retained intact during the concatenation.
This has at least two uses.
First,
if some sections of your document
need be parsed with different configurations than others,
you can parse them separately
and concatenate the resulting vectors into one.
Second,
you can weight words from some sections of you document
more heavily than those from others by:
parsing the sections into separate vectors;
assigning the vectors different position labels
with the <tt>setweight()</tt> function;
concatenating them into a single vector;
and then providing a <tt><i>weights</i></tt> argument
to the <tt>rank()</tt> function
that assigns different weights to positions with different labels.
</dd><dt>
<tt>tsvector_size(<i>vector</i> tsvector) RETURNS INT4</tt>
</dt><dd>
Returns the number of lexemes stored in the vector.
</dd><dt>
<tt><i>text</i>::tsvector RETURNS tsvector</tt>
</dt><dd>
Directly casting text to a <tt>tsvector</tt>
allows you to directly inject lexemes into a vector,
with whatever positions and position weights you choose to specify.
The <tt><i>text</i></tt> should be formatted
like the vector would be printed by the output of a <tt>SELECT</tt>.
See the <a href="http://www.sai.msu.su/%7Emegera/postgres/gist/tsearch/V2/docs/tsearch2-guide.html#casting">Casting</a>
section in the Guide for details.
</dd></dl>
<h3>Query Operations</h3>
<dl><dt>
<tt>to_tsquery( <em>[</em><i>configuration</i>,<em>]</em>
<i>querytext</i> text) RETURNS tsvector</tt>
</dt><dd>
Parses a query,
which should be single words separated by the boolean operators
"<tt>&</tt>" and,
"<tt>|</tt>" or,
and "<tt>!</tt>" not,
which can be grouped using parenthesis.
Each word is reduced to a lexeme using the current
or specified configuration.
</dd><dt>
<tt>querytree(<i>query</i> tsquery) RETURNS text</tt>
</dt><dd>
This might return a textual representation of the given query.
</dd><dt>
<tt><i>text</i>::tsquery RETURNS tsquery</tt>
</dt><dd>
Directly casting text to a <tt>tsquery</tt>
allows you to directly inject lexemes into a query,
with whatever positions and position weight flags you choose to specify.
The <tt><i>text</i></tt> should be formatted
like the query would be printed by the output of a <tt>SELECT</tt>.
See the <a href="http://www.sai.msu.su/%7Emegera/postgres/gist/tsearch/V2/docs/tsearch2-guide.html#casting">Casting</a>
section in the Guide for details.
</dd></dl>
<h2><a name="configurations">Configurations</a></h2>
A configuration specifies all of the equipment necessary
to transform a document into a <tt>tsvector</tt>:
the parser that breaks its text into tokens,
and the dictionaries which then transform each token into a lexeme.
Every call to <tt>to_tsvector()</tt> (described above)
uses a configuration to perform its processing.
Three configurations come with tsearch2:
<ul>
<li><b>default</b> -- Indexes words and numbers,
using the <i>en_stem</i> English Snowball stemmer for Latin-alphabet words
and the <i>simple</i> dictionary for all others.
</li><li><b>default_russian</b> -- Indexes words and numbers,
using the <i>en_stem</i> English Snowball stemmer for Latin-alphabet words
and the <i>ru_stem</i> Russian Snowball dictionary for all others.
</li><li><b>simple</b> -- Processes both words and numbers
with the <i>simple</i> dictionary,
which neither discards any stop words nor alters them.
</li></ul>
The tsearch2 modules initially chooses your current configuration
by looking for your current locale in the <tt>locale</tt> field
of the <tt>pg_ts_cfg</tt> table described below.
You can manipulate the current configuration yourself with these functions:
<dl><dt>
<tt>set_curcfg( <i>id</i> INT <em>|</em> <i>ts_name</i> TEXT
) RETURNS VOID</tt>
</dt><dd>
Set the current configuration used by <tt>to_tsvector</tt>
and <tt>to_tsquery</tt>.
</dd><dt>
<tt>show_curcfg() RETURNS INT4</tt>
</dt><dd>
Returns the integer <tt>id</tt> of the current configuration.
</dd></dl>
<p>
Each configuration is defined by a record in the <tt>pg_ts_cfg</tt> table:
</p><pre>create table pg_ts_cfg (
id int not null primary key,
ts_name text not null,
prs_name text not null,
locale text
);</pre>
The <tt>id</tt> and <tt>ts_name</tt> are unique values
which identify the configuration;
the <tt>prs_name</tt> specifies which parser the configuration uses.
Once this parser has split document text into tokens,
the type of each resulting token --
or, more specifically, the type's <tt>tok_alias</tt>
as specified in the parser's <tt>lexem_type()</tt> table --
is searched for together with the configuration's <tt>ts_name</tt>
in the <tt>pg_ts_cfgmap</tt> table:
<pre>create table pg_ts_cfgmap (
ts_name text not null,
tok_alias text not null,
dict_name text[],
primary key (ts_name,tok_alias)
);</pre>
Those tokens whose types are not listed are discarded.
The remaining tokens are assigned integer positions,
starting with 1 for the first token in the document,
and turned into lexemes with the help of the dictionaries
whose names are given in the <tt>dict_name</tt> array for their type.
These dictionaries are tried in order,
stopping either with the first one to return a lexeme for the token,
or discarding the token if no dictionary returns a lexeme for it.
<h2><a name="testing">Testing</a></h2>
Function <tt>ts_debug</tt> allows easy testing of your <b>current</b> configuration.
You may always test another configuration using <tt>set_curcfg</tt> function.
<p>
Example:
</p><pre>apod=# select * from ts_debug('Tsearch module for PostgreSQL 7.3.3');
ts_name | tok_type | description | token | dict_name | tsvector
---------+----------+-------------+------------+-----------+--------------
default | lword | Latin word | Tsearch | {en_stem} | 'tsearch'
default | lword | Latin word | module | {en_stem} | 'modul'
default | lword | Latin word | for | {en_stem} |
default | lword | Latin word | PostgreSQL | {en_stem} | 'postgresql'
default | version | VERSION | 7.3.3 | {simple} | '7.3.3'
</pre>
Here:
<br>
<ul>
<li>tsname - configuration name
</li><li>tok_type - token type
</li><li>description - human readable name of tok_type
</li><li>token - parser's token
</li><li>dict_name - dictionary used for the token
</li><li>tsvector - final result</li></ul>
<h2><a name="parsers">Parsers</a></h2>
Each parser is defined by a record in the <tt>pg_ts_parser</tt> table:
<pre>create table pg_ts_parser (
prs_name text not null,
prs_start oid not null,
prs_nexttoken oid not null,
prs_end oid not null,
prs_headline oid not null,
prs_lextype oid not null,
prs_comment text
);</pre>
The <tt>prs_name</tt> uniquely identify the parser,
while <tt>prs_comment</tt> usually describes its name and version
for the reference of users.
The other items identify the low-level functions
which make the parser operate,
and are only of interest to someone writing a parser of their own.
<p>
The tsearch2 module comes with one parser named <tt>default</tt>
which is suitable for parsing most plain text and HTML documents.
</p><p>
Each <tt><i>parser</i></tt> argument below
must designate a parser with <tt><i>prs_name</i></tt>;
the current parser is used when this argument is omitted.
</p><dl><dt>
<tt>CREATE FUNCTION set_curprs(<i>parser</i>) RETURNS VOID</tt>
</dt><dd>
Selects a current parser
which will be used when any of the following functions
are called without a parser as an argument.
</dd><dt>
<tt>CREATE FUNCTION token_type(
<em>[</em> <i>parser</i> <em>]</em>
) RETURNS SETOF tokentype</tt>
</dt><dd>
Returns a table which defines and describes
each kind of token the parser may produce as output.
For each token type the table gives the <tt>tokid</tt>
which the parser will label each token of that type,
the <tt>alias</tt> which names the token type,
and a short description <tt>descr</tt> for the user to read.
</dd><dt>
<tt>CREATE FUNCTION parse(
<em>[</em> <i>parser</i>, <em>]</em> <i>document</i> TEXT
) RETURNS SETOF tokenout</tt>
</dt><dd>
Parses the given document and returns a series of records,
one for each token produced by parsing.
Each token includes a <tt>tokid</tt> giving its type
and a <tt>lexem</tt> which gives its content.
</dd></dl>
<h2><a name="dictionaries">Dictionaries</a></h2>
Dictionaries take textual tokens as input,
usually those produced by a parser,
and return lexemes which are usually some reduced form of the token.
Among the dictionaries which come installed with tsearch2 are:
<ul>
<li><b>simple</b> simply folds uppercase letters to lowercase
before returning the word.
</li><li><b>en_stem</b> runs an English Snowball stemmer on each word
that attempts to reduce the various forms of a verb or noun
to a single recognizable form.
</li><li><b>ru_stem</b> runs a Russian Snowball stemmer on each word.
</li></ul>
Each dictionary is defined by an entry in the <tt>pg_ts_dict</tt> table:
<pre>CREATE TABLE pg_ts_dict (
dict_name text not null,
dict_init oid,
dict_initoption text,
dict_lexize oid not null,
dict_comment text
);</pre>
The <tt>dict_name</tt>
serve as unique identifiers for the dictionary.
The meaning of the <tt>dict_initoption</tt> varies among dictionaries,
but for the built-in Snowball dictionaries
it specifies a file from which stop words should be read.
The <tt>dict_comment</tt> is a human-readable description of the dictionary.
The other fields are internal function identifiers
useful only to developers trying to implement their own dictionaries.
<p>
The argument named <tt><i>dictionary</i></tt>
in each of the following functions
should be <tt>dict_name</tt>
identifying which dictionary should be used for the operation;
if omitted then the current dictionary is used.
</p><dl><dt>
<tt>CREATE FUNCTION set_curdict(<i>dictionary</i>) RETURNS VOID</tt>
</dt><dd>
Selects a current dictionary for use by functions
that do not select a dictionary explicitly.
</dd><dt>
<tt>CREATE FUNCTION lexize(
<em>[</em> <i>dictionary</i>, <em>]</em> <i>word</i> text)
RETURNS TEXT[]</tt>
</dt><dd>
Reduces a single word to a lexeme.
Note that lexemes are arrays of zero or more strings,
since in some languages there might be several base words
from which an inflected form could arise.
</dd></dl>
<h2><a name="ranking">Ranking</a></h2>
Ranking attempts to measure how relevant documents are to particular queries
by inspecting the number of times each search word appears in the document,
and whether different search terms occur near each other.
Note that this information is only available in unstripped vectors --
ranking functions will only return a useful result
for a <tt>tsvector</tt> which still has position information!
<p>
Both of these ranking functions
take an integer <i>normalization</i> option
that specifies whether a document's length should impact its rank.
This is often desirable,
since a hundred-word document with five instances of a search word
is probably more relevant than a thousand-word document with five instances.
The option can have the values:
</p><ul>
<li><tt>0</tt> (the default) ignores document length.
</li><li><tt>1</tt> divides the rank by the logarithm of the length.
</li><li><tt>2</tt> divides the rank by the length itself.
</li></ul>
The two ranking functions currently available are:
<dl><dt>
<tt>CREATE FUNCTION rank(<br>
<em>[</em> <i>weights</i> float4[], <em>]</em>
<i>vector</i> tsvector, <i>query</i> tsquery,
<em>[</em> <i>normalization</i> int4 <em>]</em><br>
) RETURNS float4</tt>
</dt><dd>
This is the ranking function from the old version of OpenFTS,
and offers the ability to weight word instances more heavily
depending on how you have classified them.
The <i>weights</i> specify how heavily to weight each category of word:
<pre>{<i>D-weight</i>, <i>C-weight</i>, <i>B-weight</i>, <i>A-weight</i>}</pre>
If no weights are provided, then these defaults are used:
<pre>{0.1, 0.2, 0.4, 1.0}</pre>
Often weights are used to mark words from special areas of the document,
like the title or an initial abstract,
and make them more or less important than words in the document body.
</dd><dt>
<tt>CREATE FUNCTION rank_cd(<br>
<em>[</em> <i>K</i> int4, <em>]</em>
<i>vector</i> tsvector, <i>query</i> tsquery,
<em>[</em> <i>normalization</i> int4 <em>]</em><br>
) RETURNS float4</tt>
</dt><dd>
This function computes the cover density ranking
for the given document <i>vector</i> and <i>query</i>,
as described in Clarke, Cormack, and Tudhope's
"<a href="http://citeseer.nj.nec.com/clarke00relevance.html">Relevance Ranking for One to Three Term Queries</a>"
in the 1999 <i>Information Processing and Management</i>.
The value <i>K</i> is one of the values from their formula,
and defaults to <i>K</i>=4.
The examples in their paper <i>K</i>=16;
we can roughly describe the term
as stating how far apart two search terms can fall
before the formula begins penalizing them for lack of proximity.
</dd></dl>
<h2><a name="headlines">Headlines</a></h2>
<dl><dt>
<tt>CREATE FUNCTION headline(<br>
<em>[</em> <i>id</i> int4, <em>|</em> <i>ts_name</i> text, <em>]</em>
<i>document</i> text, <i>query</i> tsquery,
<em>[</em> <i>options</i> text <em>]</em><br>
) RETURNS text</tt>
</dt><dd>
Every form of the the <tt>headline()</tt> function
accepts a <tt>document</tt> along with a <tt>query</tt>,
and returns one or more ellipse-separated excerpts from the document
in which terms from the query are highlighted.
The configuration with which to parse the document
can be specified by either its <i>id</i> or <i>ts_name</i>;
if none is specified that the current configuration is used instead.
<p>
An <i>options</i> string if provided should be a comma-separated list
of one or more '<i>option</i><tt>=</tt><i>value</i>' pairs.
The available options are:
</p><ul>
<li><tt>StartSel</tt>, <tt>StopSel</tt> --
the strings with which query words appearing in the document
should be delimited to distinguish them from other excerpted words.
</li><li><tt>MaxWords</tt>, <tt>MinWords</tt> --
limits on the shortest and longest headlines you will accept.
</li><li><tt>ShortWord</tt> --
this prevents your headline from beginning or ending
with a word which has this many characters or less.
The default value of <tt>3</tt> should eliminate most English
conjunctions and articles.
</li></ul>
Any unspecified options receive these defaults:
<pre>StartSel=<b>, StopSel=</b>, MaxWords=35, MinWords=15, ShortWord=3
</pre>
</dd></dl>
</body></html>
|