Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
summaryrefslogtreecommitdiff
blob: 5398df7ad9229c8474fe78bffb6117cb99856951 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
<!--
$Header: /cvsroot/pgsql/doc/src/sgml/xfunc.sgml,v 1.66 2003/03/25 16:15:38 petere Exp $
-->

 <chapter id="xfunc">
  <title id="xfunc-title">Extending <acronym>SQL</acronym>: Functions</title>

  <indexterm zone="xfunc"><primary>function</></>

  <sect1 id="xfunc-intro">
   <title>Introduction</title>

  <para>
   <productname>PostgreSQL</productname> provides four kinds of
   functions:

   <itemizedlist>
    <listitem>
     <para>
      query language functions 
      (functions written in <acronym>SQL</acronym>)
     </para>
    </listitem>
    <listitem>
     <para>
      procedural language 
      functions (functions written in, for example, <application>PL/Tcl</> or <application>PL/pgSQL</>)
     </para>
    </listitem>
    <listitem>
     <para>
      internal functions
     </para>
    </listitem>
    <listitem>
     <para>
      C language functions
     </para>
    </listitem>
   </itemizedlist>
  </para>

  <para>
   Every kind
   of  function  can take a base type, a composite type, or
   some combination as arguments (parameters).   In  addition, 
   every kind of function can return a base type or
   a composite type.  It's easiest to define <acronym>SQL</acronym> 
   functions, so we'll start with those.  Examples in this section 
   can also be found in <filename>funcs.sql</filename> 
   and <filename>funcs.c</filename> in the tutorial directory.
  </para>

  <para>
   Throughout this chapter, it can be useful to look at the reference
   page of the <command>CREATE FUNCTION</command> command to
   understand the examples better.
  </para>
  </sect1>

  <sect1 id="xfunc-sql">
   <title>Query Language (<acronym>SQL</acronym>) Functions</title>

   <indexterm zone="xfunc-sql"><primary>function</><secondary>SQL</></>

   <para>
    SQL functions execute an arbitrary list of SQL statements, returning
    the result of the last query in the list, which must be a
    <literal>SELECT</>.
    In the simple (non-set)
    case, the first row of the last query's result will be returned.
    (Bear in mind that <quote>the first row</quote> of a multirow
    result is not well-defined unless you use <literal>ORDER BY</>.)
    If the last query happens
    to return no rows at all, NULL will be returned.
   </para>

   <para>
    <indexterm><primary>SETOF</><seealso>function</></>
    Alternatively, an SQL function may be declared to return a set,
    by specifying the function's return type
    as <literal>SETOF</literal> <replaceable>sometype</>.  In this case
    all rows of the last query's result are returned.  Further details
    appear below.
   </para>

   <para>
    The body of an SQL function should be a list of one or more SQL
    statements separated by semicolons.  Note that because the syntax
    of the <command>CREATE FUNCTION</command> command requires the body of the
    function to be enclosed in single quotes, single quote marks
    (<literal>'</>) used
    in the body of the function must be escaped, by writing two single
    quotes (<literal>''</>) or a backslash (<literal>\'</>) where each
    quote is desired.
   </para>

   <para>
    Arguments to the SQL function may be referenced in the function
    body using the syntax <literal>$<replaceable>n</></>: $1 refers to
    the first argument, $2 to the second, and so on.  If an argument
    is of a composite type, then the <quote>dot notation</quote>,
    e.g., <literal>$1.emp</literal>, may be used to access attributes
    of the argument.
   </para>

   <sect2>
    <title>Examples</title>

    <para>
     To illustrate a simple SQL function, consider the following,
     which might be used to debit a bank account:

<programlisting>
CREATE FUNCTION tp1 (integer, numeric) RETURNS integer AS '
    UPDATE bank 
        SET balance = balance - $2
        WHERE accountno = $1;
    SELECT 1;
' LANGUAGE SQL;
</programlisting>

     A user could execute this function to debit account 17 by $100.00 as
     follows:

<programlisting>
SELECT tp1(17, 100.0);
</programlisting>
    </para>

    <para>
     In practice one would probably like a more useful result from the
     function than a constant <quote>1</>, so a more likely definition
     is

<programlisting>
CREATE FUNCTION tp1 (integer, numeric) RETURNS numeric AS '
    UPDATE bank 
        SET balance = balance - $2
        WHERE accountno = $1;
    SELECT balance FROM bank WHERE accountno = $1;
' LANGUAGE SQL;
</programlisting>

     which adjusts the balance and returns the new balance.
    </para>

    <para>
     Any collection of commands in the  <acronym>SQL</acronym>
     language can be packaged together and defined as a function.
     The commands can include data modification (i.e.,
     <command>INSERT</command>, <command>UPDATE</command>, and
     <command>DELETE</command>) as well
     as <command>SELECT</command> queries.  However, the final command 
     must be a <command>SELECT</command> that returns whatever is
     specified as the function's return type.  Alternatively, if you
     want to define a SQL function that performs actions but has no
     useful value to return, you can define it as returning <type>void</>.
     In that case it must not end with a <command>SELECT</command>.
     For example:

<programlisting>
CREATE FUNCTION clean_EMP () RETURNS void AS '
    DELETE FROM EMP 
        WHERE EMP.salary &lt;= 0;
' LANGUAGE SQL;

SELECT clean_EMP();
</programlisting>

<screen>
 clean_emp
-----------

(1 row)
</screen>
    </para>

   </sect2>

   <sect2>
    <title><acronym>SQL</acronym> Functions on Base Types</title>

    <para>
     The simplest possible <acronym>SQL</acronym> function has no arguments and
     simply returns a base type, such as <type>integer</type>:
     
<programlisting>
CREATE FUNCTION one() RETURNS integer AS '
    SELECT 1 as RESULT;
' LANGUAGE SQL;

SELECT one();
</programlisting>

<screen>
 one
-----
   1
</screen>
    </para>

    <para>
     Notice that we defined a column alias within the function body for the result of the function
     (with  the  name <literal>RESULT</>),  but this column alias is not visible
     outside the function.  Hence,  the  result  is labeled <literal>one</>
     instead of <literal>RESULT</>.
    </para>

    <para>
     It is almost as easy to define <acronym>SQL</acronym> functions  
     that take base types as arguments.  In the example below, notice
     how we refer to the arguments within the function as <literal>$1</>
     and <literal>$2</>:

<programlisting>
CREATE FUNCTION add_em(integer, integer) RETURNS integer AS '
    SELECT $1 + $2;
' LANGUAGE SQL;

SELECT add_em(1, 2) AS answer;
</programlisting>

<screen>
 answer
--------
      3
</screen>
    </para>
   </sect2>

   <sect2>
    <title><acronym>SQL</acronym> Functions on Composite Types</title>

    <para>
     When  specifying  functions with arguments of composite
     types, we must  not  only  specify  which
     argument  we  want (as we did above with <literal>$1</> and <literal>$2</literal>) but
     also the attributes of  that  argument.   For  example, suppose that
     <type>EMP</type> is a table containing employee data, and therefore
     also the name of the composite type of each row of the table.  Here
     is a function <function>double_salary</function> that computes what your
     salary would be if it were doubled:

<programlisting>
CREATE FUNCTION double_salary(EMP) RETURNS integer AS '
    SELECT $1.salary * 2 AS salary;
' LANGUAGE SQL;

SELECT name, double_salary(EMP) AS dream
    FROM EMP
    WHERE EMP.cubicle ~= point '(2,1)';
</programlisting>

<screen>
 name | dream
------+-------
 Sam  |  2400
</screen>
    </para>

    <para>
     Notice the use of the syntax <literal>$1.salary</literal>
     to select one field of the argument row value.  Also notice
     how the calling <command>SELECT</> command uses a table name to denote
     the entire current row of that table as a composite value.
    </para>

    <para>
     It is also possible to build a function that returns a composite type.
     This is an example of a function 
     that returns a single <type>EMP</type> row:

<programlisting>
CREATE FUNCTION new_emp() RETURNS EMP AS '
    SELECT text ''None'' AS name,
        1000 AS salary,
        25 AS age,
        point ''(2,2)'' AS cubicle;
' LANGUAGE SQL;
</programlisting>
    </para>

    <para>
     In this case we have specified each of  the  attributes
     with  a  constant value, but any computation or expression 
     could have been substituted for these constants.
     Note two important things about defining the function:

     <itemizedlist>
      <listitem>
       <para>
	The  target  list  order must be exactly the same as
	that in which the columns appear in the table associated
	with the composite type.  (Naming the columns, as we did above,
	is irrelevant to the system.)
       </para>
      </listitem>
      <listitem>
       <para>
	You must typecast the expressions to match the
	definition of the composite type, or you will get errors like this:
<screen>
<computeroutput>
ERROR:  function declared to return emp returns varchar instead of text at column 1
</computeroutput>
</screen>
       </para>
      </listitem>
     </itemizedlist>
    </para>     

    <para>
     A function that returns a row (composite type) can be used as a table
     function, as described below.  It can also be called in the context
     of an SQL expression, but only when you
     extract a single attribute out of the row or pass the entire row into
     another function that accepts the same composite type.  For example,

<programlisting>
SELECT (new_emp()).name;
</programlisting>

<screen>
 name
------
 None
</screen>

     We need the extra parentheses to keep the parser from getting confused:

<screen>
SELECT new_emp().name;
ERROR:  parser: parse error at or near "."
</screen>
    </para>

    <para>
     Another option is to use
     functional notation for extracting an attribute.  The  simple  way 
     to explain this is that we can use the
     notations <literal>attribute(table)</>  and  <literal>table.attribute</>
     interchangeably:

<programlisting>
SELECT name(new_emp());
</programlisting>

<screen>
 name
------
 None
</screen>

<programlisting>
--
-- this is the same as:
--  SELECT EMP.name AS youngster FROM EMP WHERE EMP.age &lt; 30
--
SELECT name(EMP) AS youngster
    FROM EMP
    WHERE age(EMP) &lt; 30;
</programlisting>

<screen>
 youngster
-----------
 Sam
</screen>
    </para>

    <para>
     Another way to use a function returning a row result is to declare a
     second function accepting a row type parameter, and pass the function
     result to it:

<programlisting>
CREATE FUNCTION getname(emp) RETURNS text AS
'SELECT $1.name;'
LANGUAGE SQL;
</programlisting>

<screen>
SELECT getname(new_emp());
 getname
---------
 None
(1 row)
</screen>
    </para>     
   </sect2>

   <sect2>
    <title><acronym>SQL</acronym> Table Functions</title>

    <para>
     A table function is one that may be used in the <command>FROM</command>
     clause of a query. All SQL language functions may be used in this manner,
     but it is particularly useful for functions returning composite types.
     If the function is defined to return a base type, the table function
     produces a one-column table.  If the function is defined to return
     a composite type, the table function produces a column for each column
     of the composite type.
    </para>

    <para>
     Here is an example:

<programlisting>
CREATE TABLE foo (fooid int, foosubid int, fooname text);
INSERT INTO foo VALUES(1,1,'Joe');
INSERT INTO foo VALUES(1,2,'Ed');
INSERT INTO foo VALUES(2,1,'Mary');

CREATE FUNCTION getfoo(int) RETURNS foo AS '
    SELECT * FROM foo WHERE fooid = $1;
' LANGUAGE SQL;

SELECT *, upper(fooname) FROM getfoo(1) AS t1;
</programlisting>

<screen>
 fooid | foosubid | fooname | upper
-------+----------+---------+-------
     1 |        1 | Joe     | JOE
(2 rows)
</screen>

     As the example shows, we can work with the columns of the function's
     result just the same as if they were columns of a regular table.
    </para>

    <para>
     Note that we only got one row out of the function.  This is because
     we did not say <literal>SETOF</>.
    </para>

   </sect2>

   <sect2>
    <title><acronym>SQL</acronym> Functions Returning Sets</title>

    <para>
     When an SQL function is declared as returning <literal>SETOF</literal>
     <replaceable>sometype</>, the function's final
     <command>SELECT</> query is executed to completion, and each row it
     outputs is returned as an element of the set.
    </para>

    <para>
     This feature is normally used by calling the function as a table
     function.  In this case each row returned by the function becomes
     a row of the table seen by the query.  For example, assume that
     table <literal>foo</> has the same contents as above, and we say:

<programlisting>
CREATE FUNCTION getfoo(int) RETURNS setof foo AS '
    SELECT * FROM foo WHERE fooid = $1;
' LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;
</programlisting>

<screen>
 fooid | foosubid | fooname
-------+----------+---------
     1 |        1 | Joe
     1 |        2 | Ed
(2 rows)
</screen>
    </para>

    <para>
     Currently, functions returning sets may also be called in the target list
     of a <command>SELECT</> query.  For each row that the <command>SELECT</>
     generates by itself, the function returning set is invoked, and an output
     row is generated for each element of the function's result set. Note,
     however, that this capability is deprecated and may be removed in future
     releases. The following is an example function returning a set from the
     target list:

<programlisting>
CREATE FUNCTION listchildren(text) RETURNS SETOF text AS
'SELECT name FROM nodes WHERE parent = $1'
LANGUAGE SQL;
</programlisting>

<screen>
SELECT * FROM nodes;
   name    | parent
-----------+--------
 Top       |
 Child1    | Top
 Child2    | Top
 Child3    | Top
 SubChild1 | Child1
 SubChild2 | Child1
(6 rows)

SELECT listchildren('Top');
 listchildren
--------------
 Child1
 Child2
 Child3
(3 rows)

SELECT name, listchildren(name) FROM nodes;
  name  | listchildren
--------+--------------
 Top    | Child1
 Top    | Child2
 Top    | Child3
 Child1 | SubChild1
 Child1 | SubChild2
(5 rows)
</screen>

     In the last <command>SELECT</command>,
     notice that no output row appears for <literal>Child2</>, <literal>Child3</>, etc.
     This happens because <function>listchildren</function> returns an empty set
     for those inputs, so no output rows are generated.
    </para>
   </sect2>
  </sect1>

  <sect1 id="xfunc-pl">
   <title>Procedural Language Functions</title>

   <para>
    Procedural languages aren't built into the <productname>PostgreSQL</productname> server; they are offered
    by loadable modules. Please refer to the documentation of the
    procedural language in question for details about the syntax and how the function body
    is interpreted for each language.
   </para>

   <para>
    There are currently four procedural languages available in the
    standard <productname>PostgreSQL</productname> distribution:
    <application>PL/pgSQL</application>, <application>PL/Tcl</application>,
    <application>PL/Perl</application>, and <application>PL/Python</application>.  Other languages can be
    defined by users.  Refer to <xref linkend="xplang"> for more
    information.  The basics of developing a new procedural language are covered in <xref linkend="xfunc-plhandler">.
   </para>
  </sect1>

  <sect1 id="xfunc-internal">
   <title>Internal Functions</title>

   <indexterm zone="xfunc-internal"><primary>function</><secondary>internal</></>

   <para>
    Internal functions are functions written in C that have been statically
    linked into the <productname>PostgreSQL</productname> server.
    The <quote>body</quote> of the function definition
    specifies the C-language name of the function, which need not be the
    same as the name being declared for SQL use.
    (For reasons of backwards compatibility, an empty body
    is accepted as meaning that the C-language function name is the
    same as the SQL name.)
   </para>

   <para>
    Normally, all internal functions present in the
    backend are declared during the initialization of the database cluster (<command>initdb</command>),
    but a user could use <command>CREATE FUNCTION</command>
    to create additional alias names for an internal function.
    Internal functions are declared in <command>CREATE FUNCTION</command>
    with language name <literal>internal</literal>.  For instance, to
    create an alias for the <function>sqrt</function> function:
<programlisting>
CREATE FUNCTION square_root(double precision) RETURNS double precision
    AS 'dsqrt'
    LANGUAGE INTERNAL
    WITH (isStrict);
</programlisting>
    (Most internal functions expect to be declared <quote>strict</quote>.)
   </para>

   <note>
    <para>
     Not all <quote>predefined</quote> functions are
     <quote>internal</quote> in the above sense.  Some predefined
     functions are written in SQL.
    </para>
   </note>
  </sect1>

  <sect1 id="xfunc-c">
   <title>C Language Functions</title>

   <para>
    User-defined functions can be written in C (or a language that can
    be made compatible with C, such as C++).  Such functions are
    compiled into dynamically loadable objects (also called shared
    libraries) and are loaded by the server on demand.  The dynamic
    loading feature is what distinguishes <quote>C language</> functions
    from <quote>internal</> functions --- the actual coding conventions
    are essentially the same for both.  (Hence, the standard internal
    function library is a rich source of coding examples for user-defined
    C functions.)
   </para>

   <para>
    Two different calling conventions are currently used for C functions.
    The newer <quote>version 1</quote> calling convention is indicated by writing
    a <literal>PG_FUNCTION_INFO_V1()</literal> macro call for the function,
    as illustrated below.  Lack of such a macro indicates an old-style
    (<quote>version 0</quote>) function.  The language name specified in <command>CREATE FUNCTION</command>
    is <literal>C</literal> in either case.  Old-style functions are now deprecated
    because of portability problems and lack of functionality, but they
    are still supported for compatibility reasons.
   </para>

  <sect2 id="xfunc-c-dynload">
   <title>Dynamic Loading</title>

   <para>
    The first time a user-defined function in a particular
    loadable object file is called in a backend session,
    the dynamic loader loads that object file into memory so that the
    function can be called.  The <command>CREATE FUNCTION</command>
    for a user-defined C function must therefore specify two pieces of
    information for the function: the name of the loadable
    object file, and the C name (link symbol) of the specific function to call
    within that object file.  If the C name is not explicitly specified then
    it is assumed to be the same as the SQL function name.
   </para>

   <para>
    The following algorithm is used to locate the shared object file
    based on the name given in the <command>CREATE FUNCTION</command>
    command:

    <orderedlist>
     <listitem>
      <para>
       If the name is an absolute path, the given file is loaded.
      </para>
     </listitem>

     <listitem>
      <para>
       If the name starts with the string <literal>$libdir</literal>,
       that part is replaced by the <productname>PostgreSQL</> package
	library directory
       name, which is determined at build time.<indexterm><primary>$libdir</></>
      </para>
     </listitem>

     <listitem>
      <para>
       If the name does not contain a directory part, the file is
       searched for in the path specified by the configuration variable
       <varname>dynamic_library_path</varname>.<indexterm><primary>dynamic_library_path</></>
      </para>
     </listitem>

     <listitem>
      <para>
       Otherwise (the file was not found in the path, or it contains a
       non-absolute directory part), the dynamic loader will try to
       take the name as given, which will most likely fail.  (It is
       unreliable to depend on the current working directory.)
      </para>
     </listitem>
    </orderedlist>

    If this sequence does not work, the platform-specific shared
    library file name extension (often <filename>.so</filename>) is
    appended to the given name and this sequence is tried again.  If
    that fails as well, the load will fail.
   </para>

   <note>
    <para>
     The user ID the <productname>PostgreSQL</productname> server runs
     as must be able to traverse the path to the file you intend to
     load.  Making the file or a higher-level directory not readable
     and/or not executable by the <systemitem>postgres</systemitem> user is a
     common mistake.
    </para>
   </note>

   <para>
    In any case, the file name that is given in the
    <command>CREATE FUNCTION</command> command is recorded literally
    in the system catalogs, so if the file needs to be loaded again
    the same procedure is applied.
   </para>

   <note>
    <para>
     <productname>PostgreSQL</productname> will not compile a C function
     automatically.  The object file must be compiled before it is referenced
     in a <command>CREATE
     FUNCTION</> command.  See <xref linkend="dfunc"> for additional
     information.
    </para>
   </note>

   <note>
    <para>
     After it is used for the first time, a dynamically loaded object
     file is retained in memory.  Future calls in the same session to the
     function(s) in that file will only incur the small overhead of a symbol
     table lookup.  If you need to force a reload of an object file, for
     example after recompiling it, use the <command>LOAD</> command or
     begin a fresh session.
    </para>
   </note>

   <para>
    It is recommended to locate shared libraries either relative to
    <literal>$libdir</literal> or through the dynamic library path.
    This simplifies version upgrades if the new installation is at a
    different location.  The actual directory that
    <literal>$libdir</literal> stands for can be found out with the
    command <literal>pg_config --pkglibdir</literal>.
   </para>

   <note>
    <para>
     Before <productname>PostgreSQL</productname> release 7.2, only exact
     absolute paths to object files could be specified in <command>CREATE
     FUNCTION</>.  This approach is now deprecated since it makes the
     function definition unnecessarily unportable.  It's best to specify
     just the shared library name with no path nor extension, and let
     the search mechanism provide that information instead.
    </para>
   </note>

  </sect2>

   <sect2>
    <title>Base Types in C-Language Functions</title>

    <para>
     <xref linkend="xfunc-c-type-table"> gives the C type required for
     parameters in the C functions that will be loaded into 
     <productname>PostgreSQL</>.
     The <quote>Defined In</quote> column gives the header file that
     needs to be included to get the type definition.  (The actual
     definition may be in a different file that is included by the
     listed file.  It is recommended that users stick to the defined
     interface.)  Note that you should always include
     <filename>postgres.h</filename> first in any source file, because
     it declares a number of things that you will need anyway.
    </para>

     <table tocentry="1" id="xfunc-c-type-table">
      <title>Equivalent C Types
       for Built-In <productname>PostgreSQL</productname> Types</title>
      <titleabbrev>Equivalent C Types</titleabbrev>
      <tgroup cols="3">
       <thead>
	<row>
	 <entry>
	  SQL Type
	 </entry>
	 <entry>
	  C Type
	 </entry>
	 <entry>
	  Defined In
	 </entry>
	</row>
       </thead>
       <tbody>
	<row>
	 <entry><type>abstime</type></entry>
	 <entry><type>AbsoluteTime</type></entry>
	 <entry><filename>utils/nabstime.h</filename></entry>
	</row>
	<row>
	 <entry><type>boolean</type></entry>
	 <entry><type>bool</type></entry>
	 <entry><filename>postgres.h</filename> (maybe compiler built-in)</entry>
	</row>
	<row>
	 <entry><type>box</type></entry>
	 <entry><type>BOX*</type></entry>
	 <entry><filename>utils/geo_decls.h</filename></entry>
	</row>
	<row>
	 <entry><type>bytea</type></entry>
	 <entry><type>bytea*</type></entry>
	 <entry><filename>postgres.h</filename></entry>
	</row>
	<row>
	 <entry><type>"char"</type></entry>
	 <entry><type>char</type></entry>
	 <entry>(compiler built-in)</entry>
	</row>
	<row>
	 <entry><type>character</type></entry>
	 <entry><type>BpChar*</type></entry>
	 <entry><filename>postgres.h</filename></entry>
	</row>
	<row>
	 <entry><type>cid</type></entry>
	 <entry><type>CommandId</type></entry>
	 <entry><filename>postgres.h</filename></entry>
	</row>
	<row>
	 <entry><type>date</type></entry>
	 <entry><type>DateADT</type></entry>
	 <entry><filename>utils/date.h</filename></entry>
	</row>
	<row>
	 <entry><type>smallint</type> (<type>int2</type>)</entry>
	 <entry><type>int2</type> or <type>int16</type></entry>
	 <entry><filename>postgres.h</filename></entry>
	</row>
	<row>
	 <entry><type>int2vector</type></entry>
	 <entry><type>int2vector*</type></entry>
	 <entry><filename>postgres.h</filename></entry>
	</row>
	<row>
	 <entry><type>integer</type> (<type>int4</type>)</entry>
	 <entry><type>int4</type> or <type>int32</type></entry>
	 <entry><filename>postgres.h</filename></entry>
	</row>
	<row>
	 <entry><type>real</type> (<type>float4</type>)</entry>
	 <entry><type>float4*</type></entry>
	<entry><filename>postgres.h</filename></entry>
	</row>
	<row>
	 <entry><type>double precision</type> (<type>float8</type>)</entry>
	 <entry><type>float8*</type></entry>
	 <entry><filename>postgres.h</filename></entry>
	</row>
	<row>
	 <entry><type>interval</type></entry>
	 <entry><type>Interval*</type></entry>
	 <entry><filename>utils/timestamp.h</filename></entry>
	</row>
	<row>
	 <entry><type>lseg</type></entry>
	 <entry><type>LSEG*</type></entry>
	 <entry><filename>utils/geo_decls.h</filename></entry>
	</row>
	<row>
	 <entry><type>name</type></entry>
	 <entry><type>Name</type></entry>
	 <entry><filename>postgres.h</filename></entry>
	</row>
	<row>
	 <entry><type>oid</type></entry>
	 <entry><type>Oid</type></entry>
	 <entry><filename>postgres.h</filename></entry>
	</row>
	<row>
	 <entry><type>oidvector</type></entry>
	 <entry><type>oidvector*</type></entry>
	 <entry><filename>postgres.h</filename></entry>
	</row>
	<row>
	 <entry><type>path</type></entry>
	 <entry><type>PATH*</type></entry>
	 <entry><filename>utils/geo_decls.h</filename></entry>
	</row>
	<row>
	 <entry><type>point</type></entry>
	 <entry><type>POINT*</type></entry>
	 <entry><filename>utils/geo_decls.h</filename></entry>
	</row>
	<row>
	 <entry><type>regproc</type></entry>
	 <entry><type>regproc</type></entry>
	 <entry><filename>postgres.h</filename></entry>
	</row>
	<row>
	 <entry><type>reltime</type></entry>
	 <entry><type>RelativeTime</type></entry>
	 <entry><filename>utils/nabstime.h</filename></entry>
	</row>
	<row>
	 <entry><type>text</type></entry>
	 <entry><type>text*</type></entry>
	 <entry><filename>postgres.h</filename></entry>
	</row>
	<row>
	 <entry><type>tid</type></entry>
	 <entry><type>ItemPointer</type></entry>
	 <entry><filename>storage/itemptr.h</filename></entry>
	</row>
	<row>
	 <entry><type>time</type></entry>
	 <entry><type>TimeADT</type></entry>
	 <entry><filename>utils/date.h</filename></entry>
	</row>
	<row>
	 <entry><type>time with time zone</type></entry>
	 <entry><type>TimeTzADT</type></entry>
	 <entry><filename>utils/date.h</filename></entry>
	</row>
	<row>
	 <entry><type>timestamp</type></entry>
	 <entry><type>Timestamp*</type></entry>
	 <entry><filename>utils/timestamp.h</filename></entry>
	</row>
	<row>
	 <entry><type>tinterval</type></entry>
	 <entry><type>TimeInterval</type></entry>
	 <entry><filename>utils/nabstime.h</filename></entry>
	</row>
	<row>
	 <entry><type>varchar</type></entry>
	 <entry><type>VarChar*</type></entry>
	 <entry><filename>postgres.h</filename></entry>
	</row>
	<row>
	 <entry><type>xid</type></entry>
	 <entry><type>TransactionId</type></entry>
	 <entry><filename>postgres.h</filename></entry>
	</row>
       </tbody>
      </tgroup>
     </table>

    <para>
     Internally, <productname>PostgreSQL</productname> regards a
     base type as a <quote>blob  of memory</quote>.   The  user-defined  
     functions that you define over a type in turn define the 
     way  that  <productname>PostgreSQL</productname> can operate  
     on  it.  That is, <productname>PostgreSQL</productname> will 
     only store and retrieve the data from disk and use  your  
     user-defined functions to input, process, and output the data.
     Base types can have one of three internal formats:

     <itemizedlist>
      <listitem>
       <para>
	pass by value, fixed-length
       </para>
      </listitem>
      <listitem>
       <para>
	pass by reference, fixed-length
       </para>
      </listitem>
      <listitem>
       <para>
	pass by reference, variable-length
       </para>
      </listitem>
     </itemizedlist>
    </para>

    <para>
     By-value  types  can  only be 1, 2 or 4 bytes in length
     (also 8 bytes, if <literal>sizeof(Datum)</literal> is 8 on your machine).
     You should be careful 
     to define your types such that  they  will  be  the  same  
     size (in bytes) on all architectures.  For example, the 
     <literal>long</literal> type is dangerous because  it  
     is 4 bytes on some machines and 8 bytes on others, whereas 
     <type>int</type>  type  is  4  bytes  on  most  
     Unix machines.  A reasonable implementation of  
     the  <type>int4</type>  type  on  Unix
     machines might be:
     
<programlisting>
/* 4-byte integer, passed by value */
typedef int int4;
</programlisting>

     <productname>PostgreSQL</productname> automatically figures
     things out so that the integer types really have the size they
     advertise.
    </para>

    <para>
     On  the  other hand, fixed-length types of any size may
     be passed by-reference.  For example, here is a  sample
     implementation of a <productname>PostgreSQL</productname> type:
     
<programlisting>
/* 16-byte structure, passed by reference */
typedef struct
{
    double  x, y;
} Point;
</programlisting>
    </para>

    <para>
     Only  pointers  to  such types can be used when passing
     them in and out of <productname>PostgreSQL</productname> functions.
     To return a value of such a type, allocate the right amount of
     memory with <literal>palloc()</literal>, fill in the allocated memory,
     and return a pointer to it.  (Alternatively, you can return an input
     value of the same type by returning its pointer.  <emphasis>Never</>
     modify the contents of a pass-by-reference input value, however.)
    </para>

    <para>
     Finally, all variable-length types must also be  passed
     by  reference.   All  variable-length  types must begin
     with a length field of exactly 4 bytes, and all data to
     be  stored within that type must be located in the memory 
     immediately  following  that  length  field.   The
     length  field  is  the  total  length  of the structure
     (i.e.,  it  includes  the  size  of  the  length  field
     itself).  We can define the text type as follows:

<programlisting>
typedef struct {
    int4 length;
    char data[1];
} text;
</programlisting>
    </para>

    <para>
     Obviously,  the  data  field declared here is not long enough to hold
     all possible strings.  Since it's impossible to declare a variable-size
     structure in <acronym>C</acronym>, we rely on the knowledge that the
     <acronym>C</acronym> compiler won't range-check array subscripts.  We
     just allocate the necessary amount of space and then access the array as
     if it were declared the right length.  (If this isn't a familiar trick to
     you, you may wish to spend some time with an introductory
     <acronym>C</acronym> programming textbook before delving deeper into
     <productname>PostgreSQL</productname> server programming.)
     When manipulating 
     variable-length types, we must  be  careful  to  allocate  
     the  correct amount  of memory and set the length field correctly.
     For example, if we wanted to  store  40  bytes  in  a  text
     structure, we might use a code fragment like this:

<programlisting>
#include "postgres.h"
...
char buffer[40]; /* our source data */
...
text *destination = (text *) palloc(VARHDRSZ + 40);
destination-&gt;length = VARHDRSZ + 40;
memcpy(destination-&gt;data, buffer, 40);
...
</programlisting>

     <literal>VARHDRSZ</> is the same as <literal>sizeof(int4)</>, but
     it's considered good style to use the macro <literal>VARHDRSZ</>
     to refer to the size of the overhead for a variable-length type.
    </para>

    <para>
     Now that we've gone over all of the possible structures
     for base types, we can show some examples of real functions.
    </para>
   </sect2>

   <sect2>
    <title>Version-0 Calling Conventions for C-Language Functions</title>

    <para>
     We present the <quote>old style</quote> calling convention first --- although
     this approach is now deprecated, it's easier to get a handle on
     initially.  In the version-0 method, the arguments and result
     of the C function are just declared in normal C style, but being
     careful to use the C representation of each SQL data type as shown
     above.
    </para>

    <para>
     Here are some examples:

<programlisting>
#include "postgres.h"
#include &lt;string.h&gt;

/* By Value */
         
int
add_one(int arg)
{
    return arg + 1;
}

/* By Reference, Fixed Length */

float8 *
add_one_float8(float8 *arg)
{
    float8    *result = (float8 *) palloc(sizeof(float8));

    *result = *arg + 1.0;
       
    return result;
}

Point *
makepoint(Point *pointx, Point *pointy)
{
    Point     *new_point = (Point *) palloc(sizeof(Point));

    new_point->x = pointx->x;
    new_point->y = pointy->y;
       
    return new_point;
}

/* By Reference, Variable Length */

text *
copytext(text *t)
{
    /*
     * VARSIZE is the total size of the struct in bytes.
     */
    text *new_t = (text *) palloc(VARSIZE(t));
    VARATT_SIZEP(new_t) = VARSIZE(t);
    /*
     * VARDATA is a pointer to the data region of the struct.
     */
    memcpy((void *) VARDATA(new_t), /* destination */
           (void *) VARDATA(t),     /* source */
           VARSIZE(t)-VARHDRSZ);    /* how many bytes */
    return new_t;
}

text *
concat_text(text *arg1, text *arg2)
{
    int32 new_text_size = VARSIZE(arg1) + VARSIZE(arg2) - VARHDRSZ;
    text *new_text = (text *) palloc(new_text_size);

    VARATT_SIZEP(new_text) = new_text_size;
    memcpy(VARDATA(new_text), VARDATA(arg1), VARSIZE(arg1)-VARHDRSZ);
    memcpy(VARDATA(new_text) + (VARSIZE(arg1)-VARHDRSZ),
           VARDATA(arg2), VARSIZE(arg2)-VARHDRSZ);
    return new_text;
}
</programlisting>
    </para>

    <para>
     Supposing that the above code has been prepared in file
     <filename>funcs.c</filename> and compiled into a shared object,
     we could define the functions to <productname>PostgreSQL</productname>
     with commands like this:
     
<programlisting>
CREATE FUNCTION add_one(int4) RETURNS int4
     AS '<replaceable>PGROOT</replaceable>/tutorial/funcs' LANGUAGE C
     WITH (isStrict);

-- note overloading of SQL function name add_one()
CREATE FUNCTION add_one(float8) RETURNS float8
     AS '<replaceable>PGROOT</replaceable>/tutorial/funcs',
        'add_one_float8'
     LANGUAGE C WITH (isStrict);

CREATE FUNCTION makepoint(point, point) RETURNS point
     AS '<replaceable>PGROOT</replaceable>/tutorial/funcs' LANGUAGE C
     WITH (isStrict);
                         
CREATE FUNCTION copytext(text) RETURNS text
     AS '<replaceable>PGROOT</replaceable>/tutorial/funcs' LANGUAGE C
     WITH (isStrict);

CREATE FUNCTION concat_text(text, text) RETURNS text
     AS '<replaceable>PGROOT</replaceable>/tutorial/funcs' LANGUAGE C
     WITH (isStrict);
</programlisting>
    </para>

    <para>
     Here <replaceable>PGROOT</replaceable> stands for the full path to
     the <productname>PostgreSQL</productname> source tree. (Better style would
     be to use just <literal>'funcs'</> in the <literal>AS</> clause,
     after having added <replaceable>PGROOT</replaceable><literal>/tutorial</>
     to the search path.  In any case, we may omit the system-specific
     extension for a shared library, commonly <literal>.so</literal> or
     <literal>.sl</literal>.)
    </para>

    <para>
     Notice that we have specified the functions as <quote>strict</quote>,
     meaning that
     the system should automatically assume a NULL result if any input
     value is NULL.  By doing this, we avoid having to check for NULL inputs
     in the function code.  Without this, we'd have to check for null values
     explicitly, for example by checking for a null pointer for each
     pass-by-reference argument.  (For pass-by-value arguments, we don't
     even have a way to check!)
    </para>

    <para>
     Although this calling convention is simple to use,
     it is not very portable; on some architectures there are problems
     with passing smaller-than-int data types this way.  Also, there is
     no simple way to return a NULL result, nor to cope with NULL arguments
     in any way other than making the function strict.  The version-1
     convention, presented next, overcomes these objections.
    </para>
   </sect2>

   <sect2>
    <title>Version-1 Calling Conventions for C-Language Functions</title>

    <para>
     The version-1 calling convention relies on macros to suppress most
     of the complexity of passing arguments and results.  The C declaration
     of a version-1 function is always
<programlisting>
Datum funcname(PG_FUNCTION_ARGS)
</programlisting>
     In addition, the macro call
<programlisting>
PG_FUNCTION_INFO_V1(funcname);
</programlisting>
     must appear in the same source file (conventionally it's written
     just before the function itself).  This macro call is not needed
     for <literal>internal</>-language functions, since
     <productname>PostgreSQL</> currently
     assumes all internal functions are version-1.  However, it is
     <emphasis>required</emphasis> for dynamically-loaded functions.
    </para>

    <para>
     In a version-1 function, each actual argument is fetched using a
     <function>PG_GETARG_<replaceable>xxx</replaceable>()</function>
     macro that corresponds to the argument's data type, and the result
     is returned using a
     <function>PG_RETURN_<replaceable>xxx</replaceable>()</function>
     macro for the return type.
    </para>

    <para>
     Here we show the same functions as above, coded in version-1 style:

<programlisting>
#include "postgres.h"
#include &lt;string.h&gt;
#include "fmgr.h"

/* By Value */

PG_FUNCTION_INFO_V1(add_one);
         
Datum
add_one(PG_FUNCTION_ARGS)
{
    int32   arg = PG_GETARG_INT32(0);

    PG_RETURN_INT32(arg + 1);
}

/* By Reference, Fixed Length */

PG_FUNCTION_INFO_V1(add_one_float8);

Datum
add_one_float8(PG_FUNCTION_ARGS)
{
    /* The macros for FLOAT8 hide its pass-by-reference nature */
    float8   arg = PG_GETARG_FLOAT8(0);

    PG_RETURN_FLOAT8(arg + 1.0);
}

PG_FUNCTION_INFO_V1(makepoint);

Datum
makepoint(PG_FUNCTION_ARGS)
{
    /* Here, the pass-by-reference nature of Point is not hidden */
    Point     *pointx = PG_GETARG_POINT_P(0);
    Point     *pointy = PG_GETARG_POINT_P(1);
    Point     *new_point = (Point *) palloc(sizeof(Point));

    new_point->x = pointx->x;
    new_point->y = pointy->y;
       
    PG_RETURN_POINT_P(new_point);
}

/* By Reference, Variable Length */

PG_FUNCTION_INFO_V1(copytext);

Datum
copytext(PG_FUNCTION_ARGS)
{
    text     *t = PG_GETARG_TEXT_P(0);
    /*
     * VARSIZE is the total size of the struct in bytes.
     */
    text     *new_t = (text *) palloc(VARSIZE(t));
    VARATT_SIZEP(new_t) = VARSIZE(t);
    /*
     * VARDATA is a pointer to the data region of the struct.
     */
    memcpy((void *) VARDATA(new_t), /* destination */
           (void *) VARDATA(t),     /* source */
           VARSIZE(t)-VARHDRSZ);    /* how many bytes */
    PG_RETURN_TEXT_P(new_t);
}

PG_FUNCTION_INFO_V1(concat_text);

Datum
concat_text(PG_FUNCTION_ARGS)
{
    text  *arg1 = PG_GETARG_TEXT_P(0);
    text  *arg2 = PG_GETARG_TEXT_P(1);
    int32 new_text_size = VARSIZE(arg1) + VARSIZE(arg2) - VARHDRSZ;
    text *new_text = (text *) palloc(new_text_size);

    VARATT_SIZEP(new_text) = new_text_size;
    memcpy(VARDATA(new_text), VARDATA(arg1), VARSIZE(arg1)-VARHDRSZ);
    memcpy(VARDATA(new_text) + (VARSIZE(arg1)-VARHDRSZ),
           VARDATA(arg2), VARSIZE(arg2)-VARHDRSZ);
    PG_RETURN_TEXT_P(new_text);
}
</programlisting>
    </para>

    <para>
     The <command>CREATE FUNCTION</command> commands are the same as
     for the version-0 equivalents.
    </para>

    <para>
     At first glance, the version-1 coding conventions may appear to
     be just pointless obscurantism.  However, they do offer a number
     of improvements, because the macros can hide unnecessary detail.
     An example is that in coding <function>add_one_float8</>, we no longer need to
     be aware that <type>float8</type> is a pass-by-reference type.  Another
     example is that the <literal>GETARG</> macros for variable-length types hide
     the need to deal with fetching <quote>toasted</quote> (compressed or
     out-of-line) values.  The old-style <function>copytext</function>
     and <function>concat_text</function> functions shown above are
     actually wrong in the presence of toasted values, because they
     don't call <function>pg_detoast_datum()</function> on their
     inputs.  (The handler for old-style dynamically-loaded functions
     currently takes care of this detail, but it does so less
     efficiently than is possible for a version-1 function.)
    </para>

    <para>
     One big improvement in version-1 functions is better handling of NULL
     inputs and results.  The macro <function>PG_ARGISNULL(<replaceable>n</>)</function>
     allows a function to test whether each input is NULL (of course, doing
     this is only necessary in functions not declared <quote>strict</>).
     As with the
     <function>PG_GETARG_<replaceable>xxx</replaceable>()</function> macros,
     the input arguments are counted beginning at zero.  Note that one
     should refrain from executing
     <function>PG_GETARG_<replaceable>xxx</replaceable>()</function> until
     one has verified that the argument isn't NULL.
     To return a NULL result, execute <function>PG_RETURN_NULL()</function>;
     this works in both strict and nonstrict functions.
    </para>

    <para>
    Other options provided in the new-style interface are two
     variants of the
     <function>PG_GETARG_<replaceable>xxx</replaceable>()</function>
     macros. The first of these,
     <function>PG_GETARG_<replaceable>xxx</replaceable>_COPY()</function>
     guarantees to return a copy of the specified parameter which is
     safe for writing into. (The normal macros will sometimes return a
     pointer to a value that is physically stored in a table, and so
     must not be written to. Using the
     <function>PG_GETARG_<replaceable>xxx</replaceable>_COPY()</function>
     macros guarantees a writable result.)
    </para>

    <para>
    The second variant consists of the
    <function>PG_GETARG_<replaceable>xxx</replaceable>_SLICE()</function>
    macros which take three parameters. The first is the number of the
    parameter (as above). The second and third are the offset and
    length of the segment to be returned. Offsets are counted from
    zero, and a negative length requests that the remainder of the
    value be returned. These routines provide more efficient access to
    parts of large values in the case where they have storage type
    <quote>external</quote>. (The storage type of a column can be specified using
    <literal>ALTER TABLE <replaceable>tablename</replaceable> ALTER
    COLUMN <replaceable>colname</replaceable> SET STORAGE
    <replaceable>storagetype</replaceable></literal>. Storage type is one of
    <literal>plain</>, <literal>external</>, <literal>extended</literal>,
     or <literal>main</>.)
    </para>

    <para>
     The version-1 function call conventions make it possible to
     return <quote>set</quote> results and implement trigger functions and
     procedural-language call handlers.  Version-1 code is also more
     portable than version-0, because it does not break ANSI C restrictions
     on function call protocol.  For more details see
     <filename>src/backend/utils/fmgr/README</filename> in the source
     distribution.
    </para>
   </sect2>

   <sect2>
    <title>Composite Types in C-Language Functions</title>

    <para>
     Composite types do not  have  a  fixed  layout  like  C
     structures.   Instances of a composite type may contain
     null fields.  In addition,  composite  types  that  are
     part  of  an  inheritance  hierarchy may have different
     fields than other members of the same inheritance hierarchy.    
     Therefore,  <productname>PostgreSQL</productname>  provides  
     a  procedural interface for accessing fields of composite types  
     from C.  As <productname>PostgreSQL</productname> processes 
     a set of rows, each row will be passed into your 
     function as an  opaque  structure of type <literal>TUPLE</literal>.
     Suppose we want to write a function to answer the query

<programlisting>
SELECT name, c_overpaid(emp, 1500) AS overpaid
FROM emp
WHERE name = 'Bill' OR name = 'Sam';
</programlisting>

     In the query above, we can define <function>c_overpaid</> as:
     
<programlisting>
#include "postgres.h"
#include "executor/executor.h"  /* for GetAttributeByName() */

bool
c_overpaid(TupleTableSlot *t, /* the current row of EMP */
           int32 limit)
{
    bool isnull;
    int32 salary;

    salary = DatumGetInt32(GetAttributeByName(t, "salary", &amp;isnull));
    if (isnull)
        return (false);
    return salary &gt; limit;
}

/* In version-1 coding, the above would look like this: */

PG_FUNCTION_INFO_V1(c_overpaid);

Datum
c_overpaid(PG_FUNCTION_ARGS)
{
    TupleTableSlot  *t = (TupleTableSlot *) PG_GETARG_POINTER(0);
    int32            limit = PG_GETARG_INT32(1);
    bool isnull;
    int32 salary;

    salary = DatumGetInt32(GetAttributeByName(t, "salary", &amp;isnull));
    if (isnull)
        PG_RETURN_BOOL(false);
    /* Alternatively, we might prefer to do PG_RETURN_NULL() for null salary */

    PG_RETURN_BOOL(salary &gt; limit);
}
</programlisting>
    </para>

    <para>
     <function>GetAttributeByName</function> is the 
     <productname>PostgreSQL</productname> system function that
     returns attributes out of the current row.  It has
     three arguments: the argument of type <type>TupleTableSlot*</type> passed into
     the  function, the name of the desired attribute, and a
     return parameter that tells whether  the  attribute
     is  null.   <function>GetAttributeByName</function> returns a <type>Datum</type>
     value that you can convert to the proper data type by using the
     appropriate <function>DatumGet<replaceable>XXX</replaceable>()</function> macro.
    </para>

    <para>
     The  following  command  lets  <productname>PostgreSQL</productname>  
     know  about  the <function>c_overpaid</function> function:

<programlisting>
CREATE FUNCTION c_overpaid(emp, int4) 
RETURNS bool
AS '<replaceable>PGROOT</replaceable>/tutorial/funcs' 
LANGUAGE C;
</programlisting>
    </para>
   </sect2>

   <sect2>
    <title>Table Function API</title>

    <para>
     The Table Function API assists in the creation of user-defined
     C language table functions (<xref linkend="xfunc-tablefunctions">).
     Table functions are functions that produce a set of rows, made up of
     either base (scalar) data types, or composite (multi-column) data types.
     The API is split into two main components: support for returning
     composite data types, and support for returning multiple rows
     (set-returning functions or <acronym>SRF</>s).
    </para>

    <para>
     The Table Function API relies on macros and functions to suppress most
     of the complexity of building composite data types and returning multiple
     results.  A table function must follow the version-1 calling convention
     described above.  In addition, the source file must include:
<programlisting>
#include "funcapi.h"
</programlisting>
    </para>

   <sect3>
    <title>Returning Rows (Composite Types)</title>

    <para>
     The Table Function API support for returning composite data types
     (or rows) starts with the <structname>AttInMetadata</>
     structure. This structure holds arrays of individual attribute
     information needed to create a row from raw C strings. It also
     saves a pointer to the <structname>TupleDesc</>. The information
     carried here is derived from the <structname>TupleDesc</>, but it
     is stored here to avoid redundant CPU cycles on each call to a
     table function.  In the case of a function returning a set, the
     <structname>AttInMetadata</> structure should be computed
     once during the first call and saved for re-use in later calls.
<programlisting>
typedef struct AttInMetadata
{
    /* full TupleDesc */
    TupleDesc       tupdesc;

    /* array of attribute type input function finfo */
    FmgrInfo       *attinfuncs;

    /* array of attribute type typelem */
    Oid            *attelems;

    /* array of attribute typmod */
    int32    	   *atttypmods;
}	AttInMetadata;
</programlisting>
    </para>

    <para>
     To assist you in populating this structure, several functions and a macro
     are available. Use
<programlisting>
TupleDesc RelationNameGetTupleDesc(const char *relname)
</programlisting>
     to get a <structname>TupleDesc</> based on a specified relation, or
<programlisting>
TupleDesc TypeGetTupleDesc(Oid typeoid, List *colaliases)
</programlisting>
     to get a <structname>TupleDesc</> based on a type OID. This can
     be used to get a <structname>TupleDesc</> for a base (scalar) or
     composite (relation) type. Then
<programlisting>
AttInMetadata *TupleDescGetAttInMetadata(TupleDesc tupdesc)
</programlisting>
     will return a pointer to an <structname>AttInMetadata</>,
     initialized based on the given
     <structname>TupleDesc</>. <structname>AttInMetadata</> can be
     used in conjunction with C strings to produce a properly formed
     tuple. The metadata is stored here to avoid redundant work across
     multiple calls.
    </para>

    <para>
     To return a tuple you must create a tuple slot based on the
     <structname>TupleDesc</>. You can use
<programlisting>
TupleTableSlot *TupleDescGetSlot(TupleDesc tupdesc)
</programlisting>
     to initialize this tuple slot, or obtain one through other (user provided)
     means. The tuple slot is needed to create a <type>Datum</> for return by the
     function.  The same slot can (and should) be re-used on each call.
    </para>

    <para>
     After constructing an <structname>AttInMetadata</> structure,
<programlisting>
HeapTuple BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values)
</programlisting>
     can be used to build a <structname>HeapTuple</> given user data
     in C string form.  <quote>values</quote> is an array of C strings, one for
     each attribute of the return tuple. Each C string should be in
     the form expected by the input function of the attribute data
     type. In order to return a null value for one of the attributes,
     the corresponding pointer in the <parameter>values</> array
     should be set to <symbol>NULL</>.  This function will need to
     be called again for each tuple you return.
    </para>

    <para>
     Building a tuple via <function>TupleDescGetAttInMetadata</> and
     <function>BuildTupleFromCStrings</> is only convenient if your
     function naturally computes the values to be returned as text
     strings.  If your code naturally computes the values as a set of
     Datums, you should instead use the underlying
     <function>heap_formtuple</> routine to convert the
     <type>Datum</type>s directly into a tuple.  You will still need
     the <structname>TupleDesc</> and a <structname>TupleTableSlot</>,
     but not <structname>AttInMetadata</>.
    </para>

    <para>
     Once you have built a tuple to return from your function, the tuple must
     be converted into a <type>Datum</>. Use
<programlisting>
TupleGetDatum(TupleTableSlot *slot, HeapTuple tuple)
</programlisting>
     to get a <type>Datum</> given a tuple and a slot.  This
     <type>Datum</> can be returned directly if you intend to return
     just a single row, or it can be used as the current return value
     in a set-returning function.
    </para>

    <para>
     An example appears below.
    </para>

   </sect3>

   <sect3>
    <title>Returning Sets</title>

    <para>
     A set-returning function (<acronym>SRF</>) is normally called
     once for each item it returns.  The <acronym>SRF</> must
     therefore save enough state to remember what it was doing and
     return the next item on each call.  The Table Function API
     provides the <structname>FuncCallContext</> structure to help
     control this process.  <literal>fcinfo-&gt;flinfo-&gt;fn_extra</>
     is used to hold a pointer to <structname>FuncCallContext</>
     across calls.
<programlisting>
typedef struct
{
    /*
     * Number of times we've been called before.
     * 
     * call_cntr is initialized to 0 for you by SRF_FIRSTCALL_INIT(), and
     * incremented for you every time SRF_RETURN_NEXT() is called.
     */
    uint32 call_cntr;

    /*
     * OPTIONAL maximum number of calls
     *
     * max_calls is here for convenience ONLY and setting it is OPTIONAL.
     * If not set, you must provide alternative means to know when the
     * function is done.
     */
    uint32 max_calls;

    /*
     * OPTIONAL pointer to result slot
     * 
     * slot is for use when returning tuples (i.e. composite data types)
     * and is not needed when returning base (i.e. scalar) data types.
     */
    TupleTableSlot *slot;

    /*
     * OPTIONAL pointer to misc user provided context info
     * 
     * user_fctx is for use as a pointer to your own struct to retain
     * arbitrary context information between calls for your function.
     */
    void *user_fctx;

    /*
     * OPTIONAL pointer to struct containing arrays of attribute type input
     * metainfo
     * 
     * attinmeta is for use when returning tuples (i.e. composite data types)
     * and is not needed when returning base (i.e. scalar) data types. It
     * is ONLY needed if you intend to use BuildTupleFromCStrings() to create
     * the return tuple.
     */
    AttInMetadata *attinmeta;

    /*
     * memory context used for structures which must live for multiple calls
     *
     * multi_call_memory_ctx is set by SRF_FIRSTCALL_INIT() for you, and used
     * by SRF_RETURN_DONE() for cleanup. It is the most appropriate memory
     * context for any memory that is to be re-used across multiple calls
     * of the SRF.
     */
    MemoryContext multi_call_memory_ctx;
} FuncCallContext;
</programlisting>
     An <acronym>SRF</> uses several functions and macros that
     automatically manipulate the <structname>FuncCallContext</>
     structure (and expect to find it via <literal>fn_extra</>).  Use
<programlisting>
SRF_IS_FIRSTCALL()
</programlisting>
     to determine if your function is being called for the first or a
     subsequent time. On the first call (only) use
<programlisting>
SRF_FIRSTCALL_INIT()
</programlisting>
     to initialize the <structname>FuncCallContext</>. On every function call,
     including the first, use
<programlisting>
SRF_PERCALL_SETUP()
</programlisting>
     to properly set up for using the <structname>FuncCallContext</>
     and clearing any previously returned data left over from the
     previous pass.
    </para>

    <para>
     If your function has data to return, use
<programlisting>
SRF_RETURN_NEXT(funcctx, result)
</programlisting>
     to return it to the caller.  (The <literal>result</> must be a
     <type>Datum</>, either a single value or a tuple prepared as
     described earlier.)  Finally, when your function is finished
     returning data, use
<programlisting>
SRF_RETURN_DONE(funcctx)
</programlisting>
     to clean up and end the <acronym>SRF</>.
    </para>

    <para>
     The memory context that is current when the <acronym>SRF</> is called is
     a transient context that will be cleared between calls.  This means
     that you do not need to <function>pfree</> everything
     you <function>palloc</>; it will go away anyway.  However, if you want to allocate
     any data structures to live across calls, you need to put them somewhere
     else.  The memory context referenced by
     <structfield>multi_call_memory_ctx</> is a suitable location for any
     data that needs to survive until the <acronym>SRF</> is finished running.  In most
     cases, this means that you should switch into
     <structfield>multi_call_memory_ctx</> while doing the first-call setup.
    </para>

    <para>
     A complete pseudo-code example looks like the following:
<programlisting>
Datum
my_Set_Returning_Function(PG_FUNCTION_ARGS)
{
    FuncCallContext  *funcctx;
    Datum             result;
    MemoryContext     oldcontext;
    [user defined declarations]

    if (SRF_IS_FIRSTCALL())
    {
        funcctx = SRF_FIRSTCALL_INIT();
        oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
        /* one-time setup code appears here: */
        [user defined code]
        [if returning composite]
            [build TupleDesc, and perhaps AttInMetadata]
            [obtain slot]
            funcctx-&gt;slot = slot;
        [endif returning composite]
        [user defined code]
        MemoryContextSwitchTo(oldcontext);
    }

    /* each-time setup code appears here: */
    [user defined code]
    funcctx = SRF_PERCALL_SETUP();
    [user defined code]

    /* this is just one way we might test whether we are done: */
    if (funcctx-&gt;call_cntr &lt; funcctx-&gt;max_calls)
    {
        /* here we want to return another item: */
        [user defined code]
        [obtain result Datum]
        SRF_RETURN_NEXT(funcctx, result);
    }
    else
    {
        /* here we are done returning items, and just need to clean up: */
        [user defined code]
        SRF_RETURN_DONE(funcctx);
    }
}
</programlisting>
    </para>

    <para>
     A complete example of a simple <acronym>SRF</> returning a composite type looks like:
<programlisting>
PG_FUNCTION_INFO_V1(testpassbyval);
Datum
testpassbyval(PG_FUNCTION_ARGS)
{
    FuncCallContext     *funcctx;
    int                  call_cntr;
    int                  max_calls;
    TupleDesc            tupdesc;
    TupleTableSlot       *slot;
    AttInMetadata       *attinmeta;

     /* stuff done only on the first call of the function */
     if (SRF_IS_FIRSTCALL())
     {
        MemoryContext	oldcontext;

        /* create a function context for cross-call persistence */
        funcctx = SRF_FIRSTCALL_INIT();

        /* switch to memory context appropriate for multiple function calls */
        oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);

        /* total number of tuples to be returned */
        funcctx-&gt;max_calls = PG_GETARG_UINT32(0);

        /*
         * Build a tuple description for a __testpassbyval tuple
         */
        tupdesc = RelationNameGetTupleDesc("__testpassbyval");

        /* allocate a slot for a tuple with this tupdesc */
        slot = TupleDescGetSlot(tupdesc);

        /* assign slot to function context */
        funcctx-&gt;slot = slot;

        /*
         * Generate attribute metadata needed later to produce tuples from raw
         * C strings
         */
        attinmeta = TupleDescGetAttInMetadata(tupdesc);
        funcctx-&gt;attinmeta = attinmeta;

        MemoryContextSwitchTo(oldcontext);
    }

    /* stuff done on every call of the function */
    funcctx = SRF_PERCALL_SETUP();

    call_cntr = funcctx-&gt;call_cntr;
    max_calls = funcctx-&gt;max_calls;
    slot = funcctx-&gt;slot;
    attinmeta = funcctx-&gt;attinmeta;
 
    if (call_cntr &lt; max_calls)    /* do when there is more left to send */
    {
        char       **values;
        HeapTuple    tuple;
        Datum        result;

        /*
         * Prepare a values array for storage in our slot.
         * This should be an array of C strings which will
         * be processed later by the appropriate "in" functions.
         */
        values = (char **) palloc(3 * sizeof(char *));
        values[0] = (char *) palloc(16 * sizeof(char));
        values[1] = (char *) palloc(16 * sizeof(char));
        values[2] = (char *) palloc(16 * sizeof(char));

        snprintf(values[0], 16, "%d", 1 * PG_GETARG_INT32(1));
        snprintf(values[1], 16, "%d", 2 * PG_GETARG_INT32(1));
        snprintf(values[2], 16, "%d", 3 * PG_GETARG_INT32(1));

        /* build a tuple */
        tuple = BuildTupleFromCStrings(attinmeta, values);

        /* make the tuple into a datum */
        result = TupleGetDatum(slot, tuple);

        /* Clean up (this is not actually necessary) */
        pfree(values[0]);
        pfree(values[1]);
        pfree(values[2]);
        pfree(values);

         SRF_RETURN_NEXT(funcctx, result);
    }
    else    /* do when there is no more left */
    {
         SRF_RETURN_DONE(funcctx);
    }
}
</programlisting>
     with supporting SQL code of
<programlisting>
CREATE TYPE __testpassbyval AS (f1 int4, f2 int4, f3 int4);

CREATE OR REPLACE FUNCTION testpassbyval(int4, int4) RETURNS setof __testpassbyval
  AS 'MODULE_PATHNAME','testpassbyval' LANGUAGE 'c' IMMUTABLE STRICT;
</programlisting>
    </para>

    <para>
     See <filename>contrib/tablefunc</> for more examples of table functions.
    </para>

   </sect3>

   </sect2>

   <sect2>
    <title>Writing Code</title>

    <para>
     We now turn to the more difficult task of writing  
     programming  language  functions.  Be warned: this section
     of the manual will not make you a programmer.  You must
     have  a  good  understanding of <acronym>C</acronym>
     (including the use of pointers)  
     before  trying to write <acronym>C</acronym> functions for 
     use with <productname>PostgreSQL</productname>. While  it may 
     be possible to load functions written in languages other 
     than <acronym>C</acronym> into  <productname>PostgreSQL</productname>,  
     this  is  often difficult  (when  it  is possible at all) 
     because other languages, such as <acronym>FORTRAN</acronym> 
     and <acronym>Pascal</acronym> often do not follow the same 
     <firstterm>calling convention</firstterm>
     as <acronym>C</acronym>.  That is, other
     languages  do  not  pass  argument  and  return  values
     between functions in the same way.  For this reason, we
     will assume that your  programming  language  functions
     are written in <acronym>C</acronym>.
    </para>

    <para>
     The  basic  rules  for building <acronym>C</acronym> functions 
     are as follows:

     <itemizedlist>
      <listitem>
       <para>
	Use <literal>pg_config --includedir-server</literal><indexterm><primary>pg_config</></> to find
	out where the <productname>PostgreSQL</> server header files are installed on
	your system (or the system that your users will be running
	on).  This option is new with <productname>PostgreSQL</> 7.2.
	For <productname>PostgreSQL</>
	7.1 you should use the option <option>--includedir</option>.
	(<command>pg_config</command> will exit with a non-zero status
	if it encounters an unknown option.)  For releases prior to
	7.1 you will have to guess, but since that was before the
	current calling conventions were introduced, it is unlikely
	that you want to support those releases.
       </para>
      </listitem>

      <listitem>
       <para>
	When allocating memory, use the
	<productname>PostgreSQL</productname> routines
	<function>palloc</function> and <function>pfree</function>
	instead of the corresponding <acronym>C</acronym> library
	routines <function>malloc</function> and
	<function>free</function>.  The memory allocated by
	<function>palloc</function> will be freed automatically at the
	end of each transaction, preventing memory leaks.
       </para>
      </listitem>

      <listitem>
       <para>
	Always zero the bytes of your structures using
	<function>memset</function> or <function>bzero</function>.
	Several routines (such as the hash access method, hash join
	and the sort algorithm) compute functions of the raw bits
	contained in your structure.  Even if you initialize all
	fields of your structure, there may be several bytes of
	alignment padding (holes in the structure) that may contain
	garbage values.
       </para>
      </listitem>

      <listitem>
       <para>
        Most of the internal <productname>PostgreSQL</productname> types
	are declared in <filename>postgres.h</filename>, while the function
	manager interfaces (<symbol>PG_FUNCTION_ARGS</symbol>, etc.)
	are in <filename>fmgr.h</filename>, so you will need to
	include at least these two files.  For portability reasons it's best
	to include <filename>postgres.h</filename> <emphasis>first</>,
	before any other system or user header files.
	Including <filename>postgres.h</filename> will also include
	<filename>elog.h</filename> and <filename>palloc.h</filename>
	for you.
       </para>
      </listitem>

      <listitem>
       <para>
        Symbol names defined within object files must not conflict
        with each other or with symbols defined in the
        <productname>PostgreSQL</productname> server executable.  You
        will have to rename your functions or variables if you get
        error messages to this effect.
       </para>
      </listitem>

      <listitem>
       <para>
	Compiling and linking your object code  so  that
	it  can  be  dynamically  loaded  into  
	<productname>PostgreSQL</productname>
	always requires special flags.
	See <xref linkend="dfunc">
	for  a  detailed explanation of how to do it for
	your particular operating system.
       </para>
      </listitem>
     </itemizedlist>
    </para>
   </sect2>

&dfunc;

  </sect1>

  <sect1 id="xfunc-overload">
   <title>Function Overloading</title>

   <indexterm zone="xfunc-overload"><primary>overloading</></>

   <para>
    More than one function may be defined with the same SQL name, so long
    as the arguments they take are different.  In other words,
    function names can be <firstterm>overloaded</firstterm>.  When a
    query is executed, the server will determine which function to
    call from the data types and the number of the provided arguments.
    Overloading can also be used to simulate functions with a variable
    number of arguments, up to a finite maximum number.
   </para>

   <para>
    A function may also have the same name as an attribute.  In the case
    that there is an ambiguity between a function on a complex type and
    an attribute of the complex type, the attribute will always be used.
   </para>

   <para>
    When creating a family of overloaded functions, one should be
    careful not to create ambiguities.  For instance, given the
    functions
<programlisting>
CREATE FUNCTION test(int, real) RETURNS ...
CREATE FUNCTION test(smallint, double precision) RETURNS ...
</programlisting>
    it is not immediately clear which function would be called with
    some trivial input like <literal>test(1, 1.5)</literal>.  The
    currently implemented resolution rules are described in the
    <xref linkend="typeconv">, but it is unwise to design a system that subtly
    relies on this behavior.
   </para>

   <para>
    When overloading C language functions, there is an additional
    constraint: The C name of each function in the family of
    overloaded functions must be different from the C names of all
    other functions, either internal or dynamically loaded.  If this
    rule is violated, the behavior is not portable.  You might get a
    run-time linker error, or one of the functions will get called
    (usually the internal one).  The alternative form of the
    <literal>AS</> clause for the SQL <command>CREATE
    FUNCTION</command> command decouples the SQL function name from
    the function name in the C source code.  E.g.,
<programlisting>
CREATE FUNCTION test(int) RETURNS int
    AS '<replaceable>filename</>', 'test_1arg'
    LANGUAGE C;
CREATE FUNCTION test(int, int) RETURNS int
    AS '<replaceable>filename</>', 'test_2arg'
    LANGUAGE C;
</programlisting>
    The names of the C functions here reflect one of many possible conventions.
   </para>

   <para>
    Prior to <productname>PostgreSQL</productname> 7.0, this
    alternative syntax did not exist.  There is a trick to get around
    the problem, by defining a set of C functions with different names
    and then define a set of identically-named SQL function wrappers
    that take the appropriate argument types and call the matching C
    function.
   </para>
  </sect1>

  <sect1 id="xfunc-tablefunctions">
   <title>Table Functions</title>

   <indexterm zone="xfunc-tablefunctions"><primary>function</></>

   <para>
    Table functions are functions that produce a set of rows, made up of
    either base (scalar) data types, or composite (multi-column) data types.
    They are used like a table, view, or subselect in the <literal>FROM</>
    clause of a query. Columns returned by table functions may be included in
    <literal>SELECT</>, <literal>JOIN</>, or <literal>WHERE</> clauses in the
    same manner as a table, view, or subselect column.
   </para>

   <para>
    If a table function returns a base data type, the single result column
    is named for the function. If the function returns a composite type, the
    result columns get the same names as the individual attributes of the type.
   </para>

   <para>
    A table function may be aliased in the <literal>FROM</> clause, but it also
    may be left unaliased. If a function is used in the FROM clause with no
    alias, the function name is used as the relation name.
   </para>

   <para>
    Table functions work wherever tables do in <literal>SELECT</> statements.
    For example
<programlisting>
CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo(int) RETURNS setof foo AS '
    SELECT * FROM foo WHERE fooid = $1;
' LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM foo
WHERE foosubid in (select foosubid from getfoo(foo.fooid) z
                   where z.fooid = foo.fooid);

CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1);
SELECT * FROM vw_getfoo;
</programlisting>
    are all valid statements.
   </para>

   <para>
    In some cases it is useful to define table functions that can return
    different column sets depending on how they are invoked.  To support this,
    the table function can be declared as returning the pseudo-type
    <type>record</>.  When such a function is used in a query, the expected
    row structure must be specified in the query itself, so that the system
    can know how to parse and plan the query.  Consider this example:
<programlisting>
SELECT *
FROM dblink('dbname=template1', 'select proname, prosrc from pg_proc')
  AS t1(proname name, prosrc text)
WHERE proname LIKE 'bytea%';
</programlisting>
    The <literal>dblink</> function executes a remote query (see
    <literal>contrib/dblink</>).  It is declared to return <type>record</>
    since it might be used for any kind of query.  The actual column set
    must be specified in the calling query so that the parser knows, for
    example, what <literal>*</> should expand to.
   </para>

  </sect1>

  <sect1 id="xfunc-plhandler">
   <title>Procedural Language Handlers</title>

   <para>
    All calls to functions that are written in a language other than
    the current <quote>version 1</quote> interface for compiled
    languages (this includes functions in user-defined procedural languages,
    functions written in SQL, and functions using the version 0 compiled
    language interface), go through a <firstterm>call handler</firstterm>
    function for the specific language.  It is the responsibility of
    the call handler to execute the function in a meaningful way, such
    as by interpreting the supplied source text.  This section
    describes how a language call handler can be written.  This is not
    a common task, in fact, it has only been done a handful of times
    in the history of <productname>PostgreSQL</productname>, but the
    topic naturally belongs in this chapter, and the material might
    give some insight into the extensible nature of the
    <productname>PostgreSQL</productname> system.
   </para>

   <para>
    The call handler for a procedural language is a
    <quote>normal</quote> function, which must be written in a
    compiled language such as C and registered with
    <productname>PostgreSQL</productname> as taking no arguments and
    returning the <type>language_handler</type> type.
    This special pseudo-type identifies the handler as a call handler
    and prevents it from being called directly in queries.
   </para>

   <note>
    <para>
     In <productname>PostgreSQL</productname> 7.1 and later, call
     handlers must adhere to the <quote>version 1</quote> function
     manager interface, not the old-style interface.
    </para>
   </note>

   <para>
    The call handler is called in the same way as any other function:
    It receives a pointer to a
    <structname>FunctionCallInfoData</structname> <type>struct</> containing
    argument values and information about the called function, and it
    is expected to return a <type>Datum</type> result (and possibly
    set the <structfield>isnull</structfield> field of the
    <structname>FunctionCallInfoData</structname> structure, if it wishes
    to return an SQL NULL result).  The difference between a call
    handler and an ordinary callee function is that the
    <structfield>flinfo-&gt;fn_oid</structfield> field of the
    <structname>FunctionCallInfoData</structname> structure will contain
    the OID of the actual function to be called, not of the call
    handler itself.  The call handler must use this field to determine
    which function to execute.  Also, the passed argument list has
    been set up according to the declaration of the target function,
    not of the call handler.
   </para>

   <para>
    It's up to the call handler to fetch the
    <classname>pg_proc</classname> entry and to analyze the argument
    and return types of the called procedure. The AS clause from the
    <command>CREATE FUNCTION</command> of the procedure will be found
    in the <literal>prosrc</literal> attribute of the
    <classname>pg_proc</classname> table entry. This may be the source
    text in the procedural language itself (like for PL/Tcl), a
    path name to a file, or anything else that tells the call handler
    what to do in detail.
   </para>

   <para>
    Often, the same function is called many times per SQL statement.
    A call handler can avoid repeated lookups of information about the
    called function by using the
    <structfield>flinfo-&gt;fn_extra</structfield> field.  This will
    initially be NULL, but can be set by the call handler to point at
    information about the PL function.  On subsequent calls, if
    <structfield>flinfo-&gt;fn_extra</structfield> is already non-NULL
    then it can be used and the information lookup step skipped.  The
    call handler must be careful that
    <structfield>flinfo-&gt;fn_extra</structfield> is made to point at
    memory that will live at least until the end of the current query,
    since an <structname>FmgrInfo</structname> data structure could be
    kept that long.  One way to do this is to allocate the extra data
    in the memory context specified by
    <structfield>flinfo-&gt;fn_mcxt</structfield>; such data will
    normally have the same lifespan as the
    <structname>FmgrInfo</structname> itself.  But the handler could
    also choose to use a longer-lived context so that it can cache
    function definition information across queries.
   </para>

   <para>
    When a PL function is invoked as a trigger, no explicit arguments
    are passed, but the
    <structname>FunctionCallInfoData</structname>'s
    <structfield>context</structfield> field points at a
    <structname>TriggerData</structname> node, rather than being NULL
    as it is in a plain function call.  A language handler should
    provide mechanisms for PL functions to get at the trigger
    information.
   </para>

   <para>
    This is a template for a PL handler written in C:
<programlisting>
#include "postgres.h"
#include "executor/spi.h"
#include "commands/trigger.h"
#include "utils/elog.h"
#include "fmgr.h"
#include "access/heapam.h"
#include "utils/syscache.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"

PG_FUNCTION_INFO_V1(plsample_call_handler);

Datum
plsample_call_handler(PG_FUNCTION_ARGS)
{
    Datum          retval;

    if (CALLED_AS_TRIGGER(fcinfo))
    {
        /*
         * Called as a trigger procedure
         */
        TriggerData    *trigdata = (TriggerData *) fcinfo->context;

        retval = ...
    }
    else {
        /*
         * Called as a function
         */

        retval = ...
    }

    return retval;
}
</programlisting>
   </para>

   <para>
    Only a few thousand lines of code have to be added instead of the
    dots to complete the call handler.  See <xref linkend="xfunc-c">
    for information on how to compile it into a loadable module.
   </para>

   <para>
    The following commands then register the sample procedural
    language:
<programlisting>
CREATE FUNCTION plsample_call_handler () RETURNS language_handler
    AS '/usr/local/pgsql/lib/plsample'
    LANGUAGE C;
CREATE LANGUAGE plsample
    HANDLER plsample_call_handler;
</programlisting>
   </para>
  </sect1>
 </chapter>

<!-- Keep this comment at the end of the file
Local variables:
mode:sgml
sgml-omittag:nil
sgml-shorttag:t
sgml-minimize-attributes:nil
sgml-always-quote-attributes:t
sgml-indent-step:1
sgml-indent-data:t
sgml-parent-document:nil
sgml-default-dtd-file:"./reference.ced"
sgml-exposed-tags:nil
sgml-local-catalogs:("/usr/lib/sgml/catalog")
sgml-local-ecat-files:nil
End:
-->