1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
|
<Chapter Id="xfunc">
<Title>Extending <Acronym>SQL</Acronym>: Functions</Title>
<Para>
As it turns out, part of defining a new type is the
definition of functions that describe its behavior.
Consequently, while it is possible to define a new
function without defining a new type, the reverse is
not true. We therefore describe how to add new functions
to <ProductName>Postgres</ProductName> before describing
how to add new types.
<ProductName>Postgres</ProductName> <Acronym>SQL</Acronym>
provides two types of functions: query language functions
(functions written in <Acronym>SQL</Acronym> and programming
language functions (functions written in a compiled
programming language such as <Acronym>C</Acronym>.) Either kind
of function can take a base type, a composite type or
some combination as arguments (parameters). In addition,
both kinds of functions can return a base type or
a composite type. It's easier to define <Acronym>SQL</Acronym>
functions, so we'll start with those. Examples in this section
can also be found in <FileName>funcs.sql</FileName>
and <FileName>funcs.c</FileName>.
</Para>
<Sect1>
<Title>Query Language (<Acronym>SQL</Acronym>) Functions</Title>
<Sect2>
<Title><Acronym>SQL</Acronym> Functions on Base Types</Title>
<Para>
The simplest possible <Acronym>SQL</Acronym> function has no arguments and
simply returns a base type, such as <Acronym>int4</Acronym>:
<ProgramListing>
CREATE FUNCTION one() RETURNS int4
AS 'SELECT 1 as RESULT' LANGUAGE 'sql';
SELECT one() AS answer;
+-------+
|answer |
+-------+
|1 |
+-------+
</ProgramListing>
</Para>
<Para>
Notice that we defined a target list for the function
(with the name RESULT), but the target list of the
query that invoked the function overrode the function's
target list. Hence, the result is labelled answer
instead of one.
</Para>
<Para>
It's almost as easy to define <Acronym>SQL</Acronym> functions
that take base types as arguments. In the example below, notice
how we refer to the arguments within the function as $1
and $2.
<ProgramListing>
CREATE FUNCTION add_em(int4, int4) RETURNS int4
AS 'SELECT $1 + $2;' LANGUAGE 'sql';
SELECT add_em(1, 2) AS answer;
+-------+
|answer |
+-------+
|3 |
+-------+
</ProgramListing>
</Para>
</sect2>
<Sect2>
<Title><Acronym>SQL</Acronym> Functions on Composite Types</Title>
<Para>
When specifying functions with arguments of composite
types (such as EMP), we must not only specify which
argument we want (as we did above with $1 and $2) but
also the attributes of that argument. For example,
take the function double_salary that computes what your
salary would be if it were doubled.
<ProgramListing>
CREATE FUNCTION double_salary(EMP) RETURNS int4
AS 'SELECT $1.salary * 2 AS salary;' LANGUAGE 'sql';
SELECT name, double_salary(EMP) AS dream
FROM EMP
WHERE EMP.cubicle ~= '(2,1)'::point;
+-----+-------+
|name | dream |
+-----+-------+
|Sam | 2400 |
+-----+-------+
</ProgramListing>
</para>
<Para>
Notice the use of the syntax $1.salary.
Before launching into the subject of functions that
return composite types, we must first introduce the
function notation for projecting attributes. The simple way
to explain this is that we can usually use the
notation attribute(class) and class.attribute interchangably.
<ProgramListing>
--
-- this is the same as:
-- SELECT EMP.name AS youngster FROM EMP WHERE EMP.age < 30
--
SELECT name(EMP) AS youngster
FROM EMP
WHERE age(EMP) < 30;
+----------+
|youngster |
+----------+
|Sam |
+----------+
</ProgramListing>
</para>
<Para>
As we shall see, however, this is not always the case.
This function notation is important when we want to use
a function that returns a single instance. We do this
by assembling the entire instance within the function,
attribute by attribute. This is an example of a function
that returns a single EMP instance:
<ProgramListing>
CREATE FUNCTION new_emp() RETURNS EMP
AS 'SELECT \'None\'::text AS name,
1000 AS salary,
25 AS age,
\'(2,2)\'::point AS cubicle'
LANGUAGE 'sql';
</ProgramListing>
</Para>
<Para>
In this case we have specified each of the attributes
with a constant value, but any computation or expression
could have been substituted for these constants.
Defining a function like this can be tricky. Some of
the more important caveats are as follows:
<ItemizedList>
<ListItem>
<Para>
The target list order must be exactly the same as
that in which the attributes appear in the CREATE
TABLE statement (or when you execute a .* query).
</Para>
</ListItem>
<ListItem>
<Para>
You must typecast the expressions (using ::) very carefully
or you will see the following error:
<ProgramListing>
WARN::function declared to return type EMP does not retrieve (EMP.*)
</ProgramListing>
</Para>
</ListItem>
<ListItem>
<Para>
When calling a function that returns an instance, we
cannot retrieve the entire instance. We must either
project an attribute out of the instance or pass the
entire instance into another function.
<ProgramListing>
SELECT name(new_emp()) AS nobody;
+-------+
|nobody |
+-------+
|None |
+-------+
</ProgramListing>
</Para>
</ListItem>
<ListItem>
<Para>
The reason why, in general, we must use the function
syntax for projecting attributes of function return
values is that the parser just doesn't understand
the other (dot) syntax for projection when combined
with function calls.
<ProgramListing>
SELECT new_emp().name AS nobody;
WARN:parser: syntax error at or near "."
</ProgramListing>
</Para>
</ListItem>
</ItemizedList>
</para>
<Para>
Any collection of commands in the <Acronym>SQL</Acronym> query
language can be packaged together and defined as a function.
The commands can include updates (i.e., <Acronym>insert</Acronym>,
<Acronym>update</Acronym> and <Acronym>delete</Acronym>) as well
as <Acronym>select</Acronym> queries. However, the final command
must be a <Acronym>select</Acronym> that returns whatever is
specified as the function's returntype.
<ProgramListing>
CREATE FUNCTION clean_EMP () RETURNS int4
AS 'DELETE FROM EMP WHERE EMP.salary <= 0;
SELECT 1 AS ignore_this'
LANGUAGE 'sql';
SELECT clean_EMP();
+--+
|x |
+--+
|1 |
+--+
</ProgramListing>
</Para>
</sect2>
</sect1>
<Sect1>
<Title>Programming Language Functions</Title>
<Sect2>
<Title>Programming Language Functions on Base Types</Title>
<Para>
Internally, <ProductName>Postgres</ProductName> regards a
base type as a "blob of memory." The user-defined
functions that you define over a type in turn define the
way that <ProductName>Postgres</ProductName> can operate
on it. That is, <ProductName>Postgres</ProductName> will
only store and retrieve the data from disk and use your
user-defined functions to input, process, and output the data.
Base types can have one of three internal formats:
<ItemizedList>
<ListItem><Para>pass by value, fixed-length</Para>
</ListItem>
<ListItem><Para>pass by reference, fixed-length</Para>
</ListItem>
<ListItem><Para>pass by reference, variable-length</Para>
</ListItem>
</ItemizedList>
</Para>
<Para>
By-value types can only be 1, 2 or 4 bytes in length
(even if your computer supports by-value types of other
sizes). <ProductName>Postgres</ProductName> itself
only passes integer types by value. You should be careful
to define your types such that they will be the same
size (in bytes) on all architectures. For example, the
<Acronym>long</Acronym> type is dangerous because it
is 4 bytes on some machines and 8 bytes on others, whereas
<Acronym>int</Acronym> type is 4 bytes on most
<Acronym>UNIX</Acronym> machines (though not on most
personal computers). A reasonable implementation of
the <Acronym>int4</Acronym> type on <Acronym>UNIX</Acronym>
machines might be:
<ProgramListing>
/* 4-byte integer, passed by value */
typedef int int4;
</ProgramListing>
</Para>
<Para>
On the other hand, fixed-length types of any size may
be passed by-reference. For example, here is a sample
implementation of a <ProductName>Postgres</ProductName> type:
<ProgramListing>
/* 16-byte structure, passed by reference */
typedef struct
{
double x, y;
} Point;
</ProgramListing>
</Para>
<Para>
Only pointers to such types can be used when passing
them in and out of <ProductName>Postgres</ProductName> functions.
Finally, all variable-length types must also be passed
by reference. All variable-length types must begin
with a length field of exactly 4 bytes, and all data to
be stored within that type must be located in the memory
immediately following that length field. The
length field is the total length of the structure
(i.e., it includes the size of the length field
itself). We can define the text type as follows:
</Para>
<Para>
<ProgramListing>
typedef struct {
int4 length;
char data[1];
} text;
</ProgramListing>
</Para>
<Para>
Obviously, the data field is not long enough to hold
all possible strings -- it's impossible to declare such
a structure in <Acronym>C</Acronym>. When manipulating
variable-length types, we must be careful to allocate
the correct amount of memory and initialize the length field.
For example, if we wanted to store 40 bytes in a text
structure, we might use a code fragment like this:
<ProgramListing>
#include "postgres.h"
...
char buffer[40]; /* our source data */
...
text *destination = (text *) palloc(VARHDRSZ + 40);
destination->length = VARHDRSZ + 40;
memmove(destination->data, buffer, 40);
...
</ProgramListing>
</Para>
<Para>
Now that we've gone over all of the possible structures
for base types, we can show some examples of real functions.
Suppose <FileName>funcs.c</FileName> look like:
<ProgramListing>
#include <string.h>
#include "postgres.h"
/* By Value */
int
add_one(int arg)
{
return(arg + 1);
}
/* By Reference, Fixed Length */
Point *
makepoint(Point *pointx, Point *pointy )
{
Point *new_point = (Point *) palloc(sizeof(Point));
new_point->x = pointx->x;
new_point->y = pointy->y;
return new_point;
}
/* By Reference, Variable Length */
text *
copytext(text *t)
{
/*
* VARSIZE is the total size of the struct in bytes.
*/
text *new_t = (text *) palloc(VARSIZE(t));
memset(new_t, 0, VARSIZE(t));
VARSIZE(new_t) = VARSIZE(t);
/*
* VARDATA is a pointer to the data region of the struct.
*/
memcpy((void *) VARDATA(new_t), /* destination */
(void *) VARDATA(t), /* source */
VARSIZE(t)-VARHDRSZ); /* how many bytes */
return(new_t);
}
text *
concat_text(text *arg1, text *arg2)
{
int32 new_text_size = VARSIZE(arg1) + VARSIZE(arg2) - VARHDRSZ;
text *new_text = (text *) palloc(new_text_size);
memset((void *) new_text, 0, new_text_size);
VARSIZE(new_text) = new_text_size;
strncpy(VARDATA(new_text), VARDATA(arg1), VARSIZE(arg1)-VARHDRSZ);
strncat(VARDATA(new_text), VARDATA(arg2), VARSIZE(arg2)-VARHDRSZ);
return (new_text);
}
</ProgramListing>
</Para>
<Para>
On <Acronym>OSF/1</Acronym> we would type:
<ProgramListing>
CREATE FUNCTION add_one(int4) RETURNS int4
AS 'PGROOT/tutorial/funcs.so' LANGUAGE 'c';
CREATE FUNCTION makepoint(point, point) RETURNS point
AS 'PGROOT/tutorial/funcs.so' LANGUAGE 'c';
CREATE FUNCTION concat_text(text, text) RETURNS text
AS 'PGROOT/tutorial/funcs.so' LANGUAGE 'c';
CREATE FUNCTION copytext(text) RETURNS text
AS 'PGROOT/tutorial/funcs.so' LANGUAGE 'c';
</ProgramListing>
</Para>
<Para>
On other systems, we might have to make the filename
end in .sl (to indicate that it's a shared library).
</Para>
</Sect2>
<Sect2>
<Title>Programming Language Functions on Composite Types</Title>
<Para>
Composite types do not have a fixed layout like C
structures. Instances of a composite type may contain
null fields. In addition, composite types that are
part of an inheritance hierarchy may have different
fields than other members of the same inheritance hierarchy.
Therefore, <ProductName>Postgres</ProductName> provides
a procedural interface for accessing fields of composite types
from C. As <ProductName>Postgres</ProductName> processes
a set of instances, each instance will be passed into your
function as an opaque structure of type <Acronym>TUPLE</Acronym>.
Suppose we want to write a function to answer the query
<ProgramListing>
* SELECT name, c_overpaid(EMP, 1500) AS overpaid
FROM EMP
WHERE name = 'Bill' or name = 'Sam';
</ProgramListing>
In the query above, we can define c_overpaid as:
<ProgramListing>
#include "postgres.h"
#include "executor/executor.h" /* for GetAttributeByName() */
bool
c_overpaid(TupleTableSlot *t, /* the current instance of EMP */
int4 limit)
{
bool isnull = false;
int4 salary;
salary = (int4) GetAttributeByName(t, "salary", &isnull);
if (isnull)
return (false);
return(salary > limit);
}
</ProgramListing>
</Para>
<Para>
<Acronym>GetAttributeByName</Acronym> is the
<ProductName>Postgres</ProductName> system function that
returns attributes out of the current instance. It has
three arguments: the argument of type TUPLE passed into
the function, the name of the desired attribute, and a
return parameter that describes whether the attribute
is null. <Acronym>GetAttributeByName</Acronym> will
align data properly so you can cast its return value to
the desired type. For example, if you have an attribute
name which is of the type name, the <Acronym>GetAttributeByName</Acronym>
call would look like:
<ProgramListing>
char *str;
...
str = (char *) GetAttributeByName(t, "name", &isnull)
</ProgramListing>
</Para>
<Para>
The following query lets <ProductName>Postgres</ProductName>
know about the c_overpaid function:
<ProgramListing>
* CREATE FUNCTION c_overpaid(EMP, int4) RETURNS bool
AS 'PGROOT/tutorial/obj/funcs.so' LANGUAGE 'c';
</ProgramListing>
</Para>
<Para>
While there are ways to construct new instances or modify
existing instances from within a C function, these
are far too complex to discuss in this manual.
</Para>
</Sect2>
<Sect2>
<Title>Caveats</Title>
<Para>
We now turn to the more difficult task of writing
programming language functions. Be warned: this section
of the manual will not make you a programmer. You must
have a good understanding of <Acronym>C</Acronym>
(including the use of pointers and the malloc memory manager)
before trying to write <Acronym>C</Acronym> functions for
use with <ProductName>Postgres</ProductName>. While it may
be possible to load functions written in languages other
than <Acronym>C</Acronym> into <ProductName>Postgres</ProductName>,
this is often difficult (when it is possible at all)
because other languages, such as <Acronym>FORTRAN</Acronym>
and <Acronym>Pascal</Acronym> often do not follow the same
"calling convention" as <Acronym>C</Acronym>. That is, other
languages do not pass argument and return values
between functions in the same way. For this reason, we
will assume that your programming language functions
are written in <Acronym>C</Acronym>.
The basic rules for building <Acronym>C</Acronym> functions
are as follows:
<ItemizedList>
<ListItem>
<Para>
Most of the header (include) files for
<ProductName>Postgres</ProductName>
should already be installed in
<FileName>PGROOT/include</FileName> (see Figure 2).
You should always include
<ProgramListing>
-I$PGROOT/include
</ProgramListing>
on your cc command lines. Sometimes, you may
find that you require header files that are in
the server source itself (i.e., you need a file
we neglected to install in include). In those
cases you may need to add one or more of
<ProgramListing>
-I$PGROOT/src/backend
-I$PGROOT/src/backend/include
-I$PGROOT/src/backend/port/<PORTNAME>
-I$PGROOT/src/backend/obj
</ProgramListing>
(where <PORTNAME> is the name of the port, e.g.,
alpha or sparc).
</para>
</ListItem>
<ListItem>
<Para> When allocating memory, use the
<ProductName>Postgres</ProductName>
routines palloc and pfree instead of the
corresponding <Acronym>C</Acronym> library routines
malloc and free.
The memory allocated by palloc will be freed
automatically at the end of each transaction,
preventing memory leaks.
</Para>
</ListItem>
<ListItem>
<Para> Always zero the bytes of your structures using
memset or bzero. Several routines (such as the
hash access method, hash join and the sort algorithm)
compute functions of the raw bits contained in
your structure. Even if you initialize all fields
of your structure, there may be
several bytes of alignment padding (holes in the
structure) that may contain garbage values.
</Para>
</ListItem>
<ListItem>
<Para> Most of the internal <ProductName>Postgres</ProductName>
types are declared in postgres.h, so it's a good
idea to always include that file as well. Including
postgres.h will also include elog.h and palloc.h for you.
</Para>
</ListItem>
<ListItem>
<Para> Compiling and loading your object code so that
it can be dynamically loaded into
<ProductName>Postgres</ProductName>
always requires special flags. See Appendix A
for a detailed explanation of how to do it for
your particular operating system.
</Para>
</ListItem>
</ItemizedList>
</Para>
</Sect2>
</sect1>
</chapter>
|