Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content

AidaRamezani/cultural_inference

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Knowledge of cultural moral norms in large language models

Replicating code and data for submission "Knowledge of cultural moral norms in large language models".

Citation: Aida Ramezani and Yang Xu. 2023. Knowledge of cultural moral norms in large language models. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (ACL 2023).

Requirements

requirements.txt
jupyter
python >= 3.8.0

Data

  • Download World Values Survey from here, and store it in data/WVS directory.

  • Download PEW global views on morality survey from here, and store it in data/PEW_2013 directory.

  • Download globalAMT dataset and the respective moral norms from here, and here, and store them in data/MoRT_actions.

Citation

  • Christian Haerpfer, Ronald Inglehart, Alejandro Moreno, Christian Welzel, Kseniya Kizilova, Jaime Diez-Medrano, Marta Lagos, Pippa Norris, E Ponarin, and B Puranen. 2021. World Values Survey: Round Seven – Country-Pooled Datafile. Madrid, Spain & Vienna, Austria: JD Systems Institute & WVSA Secretariat. Data File Version, 2(0). URL.

  • Global Attitudes survey. PEW Research Center, 2014, Washington, D.C.,URL.

  • Patrick Schramowski, Cigdem Turan, Nico Andersen, Constantin A Rothkopf, and Kristian Kersting. 2022. Large pre-trained language models contain human-like biases of what is right and wrong to do. Nature Machine Intelligence, 4(3):258–268.

Scripts

Probing

To replicate the probing experiments, run the following scripts:

python3 src/probing_experiments/compare_prompt_responses/compare_sbert.py
python3 src/probing_experiments/compare_prompt_responses/compare_gpt2.py
python3 src/probing_experiments/compare_prompt_responses/compare_gpt3.py

Fine-tuning

To create the fine-tuning data set run

python3 src/fine_tuning/creating_finetuning_data.py

To fine-tune GPT2 models on WVS and PEW run:

python3 src/fine_tuning/finetuning.py --model gpt2 --train wvs --test pew
python3 src/fine_tuning/finetuning.py --model gpt2 --train pew --test wvs

Follow the example below to store the evaluation results on a fine-tuned model:

python3 src/fine_tuning/eval_for_finetuned.py --model gpt2 --train wvs --strategy random

Notebooks

The display items and results of experiments are shown in notebooks folder. To replicate the experiments in the paper, run the notebook by the following order:

src/notebooks/display_item_1.ipynb
src/notebooks/homogenous_inference_results.ipynb
src/notebooks/fine_grained_analysis.ipynb
src/notebooks/cluster_experiment.ipynb
src/notebooks/cultural_diversities_analysis.ipynb
src/notebooks/clustering_score_difference.ipynb
src/notebooks/finetuned_on_PEW.ipynb
src/notebooks/finetuned_on_WVS.ipynb
src/notebooks/eval_pretrained_on_finetuning_data.ipynb
src/notebooks/homogeneous_inference_fine_tuned.ipynb

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published