Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content

[pull] master from TheAlgorithms:master #52

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Oct 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
67 changes: 46 additions & 21 deletions graphs/kahns_algorithm_topo.py
Original file line number Diff line number Diff line change
@@ -1,36 +1,61 @@
def topological_sort(graph):
def topological_sort(graph: dict[int, list[int]]) -> list[int] | None:
"""
Kahn's Algorithm is used to find Topological ordering of Directed Acyclic Graph
using BFS
Perform topological sorting of a Directed Acyclic Graph (DAG)
using Kahn's Algorithm via Breadth-First Search (BFS).

Topological sorting is a linear ordering of vertices in a graph such that for
every directed edge u → v, vertex u comes before vertex v in the ordering.

Parameters:
graph: Adjacency list representing the directed graph where keys are
vertices, and values are lists of adjacent vertices.

Returns:
The topologically sorted order of vertices if the graph is a DAG.
Returns None if the graph contains a cycle.

Example:
>>> graph = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []}
>>> topological_sort(graph)
[0, 1, 2, 3, 4, 5]

>>> graph_with_cycle = {0: [1], 1: [2], 2: [0]}
>>> topological_sort(graph_with_cycle)
"""

indegree = [0] * len(graph)
queue = []
topo = []
cnt = 0
topo_order = []
processed_vertices_count = 0

# Calculate the indegree of each vertex
for values in graph.values():
for i in values:
indegree[i] += 1

# Add all vertices with 0 indegree to the queue
for i in range(len(indegree)):
if indegree[i] == 0:
queue.append(i)

# Perform BFS
while queue:
vertex = queue.pop(0)
cnt += 1
topo.append(vertex)
for x in graph[vertex]:
indegree[x] -= 1
if indegree[x] == 0:
queue.append(x)

if cnt != len(graph):
print("Cycle exists")
else:
print(topo)


# Adjacency List of Graph
graph = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []}
topological_sort(graph)
processed_vertices_count += 1
topo_order.append(vertex)

# Traverse neighbors
for neighbor in graph[vertex]:
indegree[neighbor] -= 1
if indegree[neighbor] == 0:
queue.append(neighbor)

if processed_vertices_count != len(graph):
return None # no topological ordering exists due to cycle
return topo_order # valid topological ordering


if __name__ == "__main__":
import doctest

doctest.testmod()
48 changes: 41 additions & 7 deletions strings/min_cost_string_conversion.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,11 +17,27 @@ def compute_transform_tables(
delete_cost: int,
insert_cost: int,
) -> tuple[list[list[int]], list[list[str]]]:
"""
Finds the most cost efficient sequence
for converting one string into another.

>>> costs, operations = compute_transform_tables("cat", "cut", 1, 2, 3, 3)
>>> costs[0][:4]
[0, 3, 6, 9]
>>> costs[2][:4]
[6, 4, 3, 6]
>>> operations[0][:4]
['0', 'Ic', 'Iu', 'It']
>>> operations[3][:4]
['Dt', 'Dt', 'Rtu', 'Ct']

>>> compute_transform_tables("", "", 1, 2, 3, 3)
([[0]], [['0']])
"""
source_seq = list(source_string)
destination_seq = list(destination_string)
len_source_seq = len(source_seq)
len_destination_seq = len(destination_seq)

costs = [
[0 for _ in range(len_destination_seq + 1)] for _ in range(len_source_seq + 1)
]
Expand All @@ -31,33 +47,51 @@ def compute_transform_tables(

for i in range(1, len_source_seq + 1):
costs[i][0] = i * delete_cost
ops[i][0] = f"D{source_seq[i - 1]:c}"
ops[i][0] = f"D{source_seq[i - 1]}"

for i in range(1, len_destination_seq + 1):
costs[0][i] = i * insert_cost
ops[0][i] = f"I{destination_seq[i - 1]:c}"
ops[0][i] = f"I{destination_seq[i - 1]}"

for i in range(1, len_source_seq + 1):
for j in range(1, len_destination_seq + 1):
if source_seq[i - 1] == destination_seq[j - 1]:
costs[i][j] = costs[i - 1][j - 1] + copy_cost
ops[i][j] = f"C{source_seq[i - 1]:c}"
ops[i][j] = f"C{source_seq[i - 1]}"
else:
costs[i][j] = costs[i - 1][j - 1] + replace_cost
ops[i][j] = f"R{source_seq[i - 1]:c}" + str(destination_seq[j - 1])
ops[i][j] = f"R{source_seq[i - 1]}" + str(destination_seq[j - 1])

if costs[i - 1][j] + delete_cost < costs[i][j]:
costs[i][j] = costs[i - 1][j] + delete_cost
ops[i][j] = f"D{source_seq[i - 1]:c}"
ops[i][j] = f"D{source_seq[i - 1]}"

if costs[i][j - 1] + insert_cost < costs[i][j]:
costs[i][j] = costs[i][j - 1] + insert_cost
ops[i][j] = f"I{destination_seq[j - 1]:c}"
ops[i][j] = f"I{destination_seq[j - 1]}"

return costs, ops


def assemble_transformation(ops: list[list[str]], i: int, j: int) -> list[str]:
"""
Assembles the transformations based on the ops table.

>>> ops = [['0', 'Ic', 'Iu', 'It'],
... ['Dc', 'Cc', 'Iu', 'It'],
... ['Da', 'Da', 'Rau', 'Rat'],
... ['Dt', 'Dt', 'Rtu', 'Ct']]
>>> x = len(ops) - 1
>>> y = len(ops[0]) - 1
>>> assemble_transformation(ops, x, y)
['Cc', 'Rau', 'Ct']

>>> ops1 = [['0']]
>>> x1 = len(ops1) - 1
>>> y1 = len(ops1[0]) - 1
>>> assemble_transformation(ops1, x1, y1)
[]
"""
if i == 0 and j == 0:
return []
elif ops[i][j][0] in {"C", "R"}:
Expand Down