Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content

BEbillionaireUSD/Maat

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 

Repository files navigation

Maat

maat-7599155_1280

Here is the repo for our paper ``Maat: Performance Metric Anomaly Anticipation for Cloud Services with Conditional Diffusion'', accepted by ASE 2023.

Architecture

Overview

Maat 001

Diffusion Model

Maat 002

Model M

Maat 003

Data

The data should be stored in csv files with the first column being timestamp'' and the last column being label''. If labels are not avaliable, it can be all zeros.

We put an example dataset (part of the AIOps18 dataset due to the space limit) in the ``data'' director.

Tree

.
├── dataload.py
├── detect.py
├── extract_feat.py
├── model
│   ├── PixelCNN.py
│   ├── detection.py
│   ├── diffusion.py
│   ├── network.py
│   ├── prediction.py
│   └── util.py
├── predict.py
├── requirements.txt
└── util.py

Environment

We support python3.x $\geq$ 3.7. The environment can be built by: $ pip install -r requirements.txt

Running

For the prediction phase, run: $ cd src && python predict.py

For the detection phase, you should first extract features and then run: $ cd src && python detect.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages