Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content

DS4SD/docling-eval

Repository files navigation

Docling-eval

arXiv Docs PyPI version PyPI - Python Version Poetry Code style: black Imports: isort Pydantic v2 pre-commit License MIT PyPI Downloads

Evaluate Docling on various datasets.

Features

Evaluate docling on various datasets. You can use the cli

docling-eval % poetry run evaluate --help

 Usage: evaluate [OPTIONS]

╭─ Options ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ *  --task            -t      [create|evaluate|visualize]                                 Evaluation task [default: None] [required]                 │
│ *  --modality        -m      [end-to-end|layout|table_structure|code_transcription|math  Evaluation modality [default: None] [required]             │
│                              _transcription|reading_order|markdown_text|captioning|bbox                                                             │
│                              es_text]                                                                                                               │
│ *  --benchmark       -b      [DPBench|OmniDocBench|WordScape|PubLayNet|DocLayNetV1|DocL  Benchmark name [default: None] [required]                  │
│                              ayNetV2|FUNSD|Pub1M|PubTabNet|FinTabNet|WikiTabNet]                                                                    │
│ *  --output-dir      -o      PATH                                                        Output directory [default: None] [required]                │
│    --input-dir       -i      PATH                                                        Input directory [default: None]                            │
│    --converter_type  -c      [Docling|SmolDocling]                                       Type of document converter [default: Docling]              │
│    --split           -s      TEXT                                                        Dataset split [default: test]                              │
│    --artifacts-path  -a      PATH                                                        Load artifacts from local path [default: None]             │
│    --max-items       -n      INTEGER                                                     How many items to load from the original dataset           │
│                                                                                          [default: 1000]                                            │
│    --help                                                                                Show this message and exit.                                │
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯

Benchmarks

Contributing

Please read Contributing to Docling for details.

License

The Docling codebase is under MIT license. For individual model usage, please refer to the model licenses found in the original packages.

IBM ❤️ Open Source AI

Docling-eval has been brought to you by IBM.

About

No description, website, or topics provided.

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages