A simple tool for generating an application's data access layer.
Proteus makes your SQL queries type-safe and prevents SQL injection attacks. It processes structs with struct tags on function fields to generate Go functions at runtime. These functions map input parameters to SQL query parameters and optionally map the output parameters to the output of your SQL queries.
In addition to being type-safe, Proteus also prevents SQL injection by generating prepared statements from your SQL queries. Even dynamic in
clauses
are converted into injection-proof prepared statements.
Proteus is not an ORM; it does not generate SQL. It just automates away the boring parts of interacting with databases in Go.
- Define a struct that contains function fields and tags to indicate the query and the parameter names:
type ProductDaoCtx struct {
FindByID func(ctx context.Context, q proteus.ContextQuerier, id int) (Product, error) `proq:"select * from Product where id = :id:" prop:"id"`
Update func(ctx context.Context, e proteus.ContextExecutor, p Product) (int64, error) `proq:"update Product set name = :p.Name:, cost = :p.Cost: where id = :p.Id:" prop:"p"`
FindByNameAndCost func(ctx context.Context, q proteus.ContextQuerier, name string, cost float64) ([]Product, error) `proq:"select * from Product where name=:name: and cost=:cost:" prop:"name,cost"`
FindByIDMap func(ctx context.Context, q proteus.ContextQuerier, id int) (map[string]interface{}, error) `proq:"select * from Product where id = :id:" prop:"id"`
UpdateMap func(ctx context.Context, e proteus.ContextExecutor, p map[string]interface{}) (int64, error) `proq:"update Product set name = :p.Name:, cost = :p.Cost: where id = :p.Id:" prop:"p"`
FindByNameAndCostMap func(ctx context.Context, q proteus.ContextQuerier, name string, cost float64) ([]map[string]interface{}, error) `proq:"select * from Product where name=:name: and cost=:cost:" prop:"name,cost"`
Insert func(ctx context.Context, e proteus.ContextExecutor, id int, name string, cost *float64) (int64, error) `proq:"insert into product(id, name, cost) values(:id:, :name:, :cost:)" prop:"id,name,cost"`
FindByIDSlice func(ctx context.Context, q proteus.ContextQuerier, ids []int) ([]Product, error) `proq:"select * from Product where id in (:ids:)" prop:"ids"`
FindByIDSliceAndName func(ctx context.Context, q proteus.ContextQuerier, ids []int, name string) ([]Product, error) `proq:"select * from Product where name = :name: and id in (:ids:)" prop:"ids,name"`
FindByIDSliceNameAndCost func(ctx context.Context, q proteus.ContextQuerier, ids []int, name string, cost *float64) ([]Product, error) `proq:"select * from Product where name = :name: and id in (:ids:) and (cost is null or cost = :cost:)" prop:"ids,name,cost"`
FindByIDSliceCostAndNameSlice func(ctx context.Context, q proteus.ContextQuerier, ids []int, names []string, cost *float64) ([]Product, error) `proq:"select * from Product where id in (:ids:) and (cost is null or cost = :cost:) and name in (:names:)" prop:"ids,names,cost"`
FindByNameAndCostUnlabeled func(ctx context.Context, q proteus.ContextQuerier, name string, cost float64) ([]Product, error) `proq:"select * from Product where name=:$1: and cost=:$2:"`
}
The first input parameter is of type context.Context
, and the second input parameter is of type proteus.ContextExecutor
or proteus.ContextQuerier
:
// ContextQuerier defines the interface of a type that runs a SQL query with a context
type ContextQuerier interface {
// QueryContext executes a query that returns rows, typically a SELECT.
// The args are for any placeholder parameters in the query.
QueryContext(ctx context.Context, query string, args ...interface{}) (*sql.Rows, error)
}
// ContextExecutor defines the interface of a type that runs a SQL exec with a context
type ContextExecutor interface {
// ExecContext executes a query without returning any rows.
// The args are for any placeholder parameters in the query.
ExecContext(ctx context.Context, query string, args ...interface{}) (sql.Result, error)
}
The remaining input parameters can be primitives, structs, maps of string to interface{}, or slices.
For queries, return types can be:
- empty
- a single value being returned (a primitive, struct, or map of string to interface{})
- a single value that's a slice of primitive, struct, or a map of string to interface{}
- a primitive, struct, or map of string to interface{} and an error
- a slice of primitive, struct, or a map of string to interface{} and an error
For insert/updates, return types can be:
- empty
- an int64 that indicates the number of rows affected
- a
sql.Result
- an int64 that indicates the number of rows affected and an error
- a
sql.Result
and an error
The proq
struct tag stores the query. You place variable substitutions between :
s. Proteus allows you
to refer to fields in maps and structs, as well as elements in arrays or slices using .
as a path separator. If you have a
struct like this:
type Person struct {
Name string
Address Address
Pets []Pet
}
type Pet struct {
Name string
Species string
}
type Address struct {
Street string
City string
State string
}
You can write a query like this:
insert into person(name, city, pet1_name, pet2_name) values (:p.Name:, :p.Address.City:, :p.Pets.0.Name:, :p.Pets.1.Name:)
Note that the index for an array or slice must be an int literal and the key for a map must be a string.
2. If you want to map response fields to a struct, define a struct with struct tags to indicate the mapping:
type Product struct {
Id int `prof:"id"`
Name string `prof:"name"`
Cost float64 `prof:"cost"`
}
3. Pass an instance of the Dao struct to the proteus.ShouldBuild function:
var productDao = ProductDao{}
func init() {
err := proteus.ShouldBuild(context.Background(), &productDao, proteus.Sqlite)
if err != nil {
panic(err)
}
}
4. Open a connection to a SQL database:
db := setupDb()
defer db.Close()
5. Make calls to the function fields in your Proteus-populated struct:
ctx := context.Background()
fmt.Println(productDao.FindById(ctx, db, 10))
p := Product{10, "Thingie", 56.23}
fmt.Println(productDao.Update(ctx, db, p))
fmt.Println(productDao.FindById(ctx, db, 10))
fmt.Println(productDao.FindByNameAndCost(ctx, db, "fred", 54.10))
fmt.Println(productDao.FindByNameAndCost(ctx, db, "Thingie", 56.23))
//using a map of [string]interface{} works too!
fmt.Println(productDao.FindByIdMap(ctx, db, 10))
fmt.Println(productDao.FindByNameAndCostMap(ctx, db, "Thingie", 56.23))
fmt.Println(productDao.FindById(ctx, db, 11))
m := map[string]interface{}{
"Id": 11,
"Name": "bobbo",
"Cost": 12.94,
}
fmt.Println(productDao.UpdateMap(ctx, db, m))
fmt.Println(productDao.FindById(ctx, db, 11))
fmt.Println(productDao.FindByIDSlice(ctx, db, []int{1, 3, 5}))
fmt.Println(productDao.FindByIDSliceAndName(ctx, db, []int{1, 3, 5}, "person1"))
fmt.Println(productDao.FindByIDSliceNameAndCost(ctx, db, []int{1, 3, 5}, "person3", nil))
fmt.Println(productDao.FindByIDSliceCostAndNameSlice(ctx, db, []int{1, 3, 5}, []string{"person3", "person5"}, nil))
If you are using an older database driver that does not work with the context.Context
, Proteus provides support for them as well:
type ProductDao struct {
FindByID func(q proteus.Querier, id int) (Product, error) `proq:"select * from Product where id = :id:" prop:"id"`
Update func(e proteus.Executor, p Product) (int64, error) `proq:"update Product set name = :p.Name:, cost = :p.Cost: where id = :p.Id:" prop:"p"`
FindByNameAndCost func(q proteus.Querier, name string, cost float64) ([]Product, error) `proq:"select * from Product where name=:name: and cost=:cost:" prop:"name,cost"`
FindByIDMap func(q proteus.Querier, id int) (map[string]interface{}, error) `proq:"select * from Product where id = :id:" prop:"id"`
UpdateMap func(e proteus.Executor, p map[string]interface{}) (int64, error) `proq:"update Product set name = :p.Name:, cost = :p.Cost: where id = :p.Id:" prop:"p"`
FindByNameAndCostMap func(q proteus.Querier, name string, cost float64) ([]map[string]interface{}, error) `proq:"select * from Product where name=:name: and cost=:cost:" prop:"name,cost"`
Insert func(e proteus.Executor, id int, name string, cost *float64) (int64, error) `proq:"insert into product(id, name, cost) values(:id:, :name:, :cost:)" prop:"id,name,cost"`
FindByIDSlice func(q proteus.Querier, ids []int) ([]Product, error) `proq:"select * from Product where id in (:ids:)" prop:"ids"`
FindByIDSliceAndName func(q proteus.Querier, ids []int, name string) ([]Product, error) `proq:"select * from Product where name = :name: and id in (:ids:)" prop:"ids,name"`
FindByIDSliceNameAndCost func(q proteus.Querier, ids []int, name string, cost *float64) ([]Product, error) `proq:"select * from Product where name = :name: and id in (:ids:) and (cost is null or cost = :cost:)" prop:"ids,name,cost"`
FindByIDSliceCostAndNameSlice func(q proteus.Querier, ids []int, names []string, cost *float64) ([]Product, error) `proq:"select * from Product where id in (:ids:) and (cost is null or cost = :cost:) and name in (:names:)" prop:"ids,names,cost"`
FindByNameAndCostUnlabeled func(q proteus.Querier, name string, cost float64) ([]Product, error) `proq:"select * from Product where name=:$1: and cost=:$2:"`
}
In this case, the first input parameter is either of type proteus.Executor
or proteus.Querier
:
// Executor runs queries that modify the data store.
type Executor interface {
// Exec executes a query without returning any rows.
// The args are for any placeholder parameters in the query.
Exec(query string, args ...interface{}) (sql.Result, error)
}
// Querier runs queries that return Rows from the data store
type Querier interface {
// Query executes a query that returns rows, typically a SELECT.
// The args are for any placeholder parameters in the query.
Query(query string, args ...interface{}) (*sql.Rows, error)
}
Use proteus.Build
to generate your DAO functions:
var productDao = ProductDao{}
func init() {
err := proteus.Build(&productDao, proteus.Sqlite)
if err != nil {
panic(err)
}
}
Having every DAO function returning an error can make things very cumbersone and repetitive quickly. Sometimes you just want to return a single value without having to check for errors because you are sure that any errors would be fatal, unrecoverable and require human intervention.
type UserRepository struct {
Fetch () func (ctx context.Context, q ContextQuerier)[]*models.Users `proq:"select * from users"`
}
The above struct works fine, but if the database throws an error, you won't be able to know. The following configurations will control the behavior of such scenarios.
By passing the following values in the context.Context
to the ShouldBuild
function.
c := context.WithValue(context.Background(), ContextKeyErrorBehavior, PanicAlways)
ShouldBuild(c, &dao, Postgres)
ErrorBehavior
Values:
DoNothing
- proteus does not do anything when the underlying data source throws an error.PanicWhenAbsent
- proteus willpanic
, if the DAO function being called does not have theerror
return type.PanicAlways
- proteus will alwayspanic
if there is an error from the data source, whether or not the DAO function being called indicates anerror
return type.
Proteus generates implementations of DAO functions by examining struct tags and parameters types on function fields in a struct. The following are the recognized struct tags:
proq
- The query. Returns single entity or list of entitiesprop
- The parameter names. Should be in the order of the function parameters (skipping over the first Executor or Querier parameter)
The prop
struct tag is optional. If it is not supplied, the query must contain positional parameters ($1, $2, etc.) instead
of named parameters. For example:
type ProductDaoS struct {
FindById func(ctx context.Context, q proteus.ContextQuerier, id int) (Product, error) `proq:"select * from Product where id = :$1:"`
Update func(ctx context.Context, e proteus.ContextExecutor, p Product) (int64, error) `proq:"update Product set name = :$1.Name:, cost = :$1.Cost: where id = :$1.Id:"`
FindByNameAndCost func(ctx context.Context, q proteus.ContextQuerier, name string, cost float64) ([]Product, error) `proq:"select * from Product where name=:$1: and cost=:$2:"`
}
If you want to map the output of a DAO with a proq
tag to a struct, then create a struct and put
the following struct tag on each field that you want to map to a value in the output:
prof
- The fields on the dto that are mapped to select parameters in a query
Struct tags are cumbersome for all but the shortest queries. In order to allow a more natural way to store longer queries,
one or more instances of the proteus.QueryMapper
interface can be passed into the proteus.Build
function. In order to
reference a query stored in an proteus.QueryMapper
, you should put q:name
as the value of the proq
struct tag, where
name
is the name for the query.
For example:
m := proteus.MapMapper{
"q1": "select * from foo where id = :id:",
"q2": "update foo set x=:x: where id = :id:",
}
type s struct {
GetF func(ctx context.Context, q proteus.ContextQuerier, id string) (f, error) `proq:"q:q1" prop:"id"`
Update func(ctx context.Context, e proteus.ContextExecutor, id string, x string) (int64, error) `proq:"q:q2" prop:"id,x"`
}
sImpl := s{}
err := proteus.ShouldBuild(context.Background(), &sImpl, proteus.Sqlite, m)
Out of the box, you can use either a map[string]string
or a unix properties file to store your queries. In order
to use a map[string]string
, cast your map to proteus.MapMapper
(or just declare your variable to be of type proteus.MapMapper
). To use a properties file, call the method
proteus.PropFileToQueryMapper
with the name of the property file that contains your queries.
Some people don't want to use structs and struct tags to implement their SQL mapping layer. Starting with version 0.11.0, Proteus can also generate functions that aren't fields in a struct.
First, create an instance of a proteus.Builder
. The factory function takes a proteus.Adapter
and zero or more proteus.QueryMapper
instances:
b := NewBuilder(Postgres)
Next, declare a function variable with the signature you want. The parameters for the function variables follow the same rules as the function fields:
var f func(c context.Context, e ContextExecutor, name string, age int) (int64, error)
var g func(c context.Context, q ContextQuerier, id int) (*Person, error)
Then call the BuildFunction
method on your proteus.Builder
instance, passing in a pointer to your function variable, the SQL query (or a query mapper reference),
and the parameter names as a string slice:
err := b.BuildFunction(ctx, &f, "INSERT INTO PERSON(name, age) VALUES(:name:, :age:)", []string{"name", "age"})
if err != nil {
t.Fatalf("build function failed: %v", err)
}
err = b.BuildFunction(ctx, &g, "SELECT * FROM PERSON WHERE id = :id:", []string{"id"})
if err != nil {
t.Fatalf("build function 2 failed: %v", err)
}
Finally, call your functions, to run your SQL queries:
db := setupDbPostgres()
defer db.Close()
ctx := context.Background()
rows, err := f(ctx, db, "Fred", 20)
if err != nil {
t.Fatalf("create failed: %v", err)
}
fmt.Println(rows) // prints 1
p, err := g(ctx, db, 1)
if err != nil {
t.Fatalf("get failed: %v", err)
}
fmt.Println(p) // prints {1, Fred, 20}
While Proteus is focused on type safety, sometimes you just want to run a query without associating it with a function. Starting with version 0.11.0, Proteus allows you to run ad-hoc database queries.
First, create an instance of a proteus.Builder
. The factory function takes a proteus.Adapter
and zero or more proteus.QueryMapper
instances:
b := NewBuilder(Postgres)
Next, run your query by passing it to the Exec
, ExecResult
, or Query
methods on proteus.Builder
.
Exec
expects a context.Context
, a proteus.ContextExecutor
, the query, and a
map of string
to interface{}
, where the keys are the parameter names and the values are the parameter values. It returns an int64 with the number of rows modified and
and error.
ExecResult
expects a context.Context
, a proteus.ContextExecutor
, the query, and a
map of string
to interface{}
, where the keys are the parameter names and the values are the parameter values. It returns a sql.Result
with the number of rows modified and
and error.
Query
expected a context.Context
, a proteus.ContextQuerier
, the query,
a map of string
to interface{}
, where the keys are the parameter names and the values are the parameter values, and a pointer to the value that
should be populated by the query. The method returns an error.
db := setupDbPostgres()
defer db.Close()
ctx := context.Background()
rows, err := b.Exec(c, db, "INSERT INTO PERSON(name, age) VALUES(:name:, :age:)", map[string]interface{}{"name": "Fred", "age": 20})
if err != nil {
t.Fatalf("create failed: %v", err)
}
fmt.Println(rows) // prints 1
var p *Person
err = b.Query(c, db, "SELECT * FROM PERSON WHERE id = :id:", map[string]interface{}{"id": 1}, &p)
if err != nil {
t.Fatalf("get failed: %v", err)
}
fmt.Println(*p) // prints {1, Fred, 20}
Ad-hoc queries support all of the functionality of Proteus except for type safety. You can reference queries in proteus.QueryMapper
instances, build out dynamic
in
clauses, extract values from struct
instances, and map to a struct with prof
tags on its fields.
1. Why doesn't Proteus generate a struct that meets an interface?
Go has some surprising limitations. One of them is that there is no way to use reflection to build a implementation of a method; you can only build implementations of functions. The difference is subtle, but the net result is that you cannot supply an interface to the reflection API and get back something that implements that interface.
Another go limitation is that there is also no way to attach metadata to an interface's method. only struct fields can have associated metadata.
A third limitation is that a go interface is not satisfied by a struct that has fields of function type, even if the names of the functions and the types of the function parameters match an interface.
Given these limitations, Proteus uses structs to hold the generated functions. If you want an interface that describes the functionality provided by the struct, you can do something like this:
type ProductDaoS struct {
FindById func(ctx context.Context, q proteus.ContextQuerier, id int) (Product, error) `proq:"select * from Product where id = :id:" prop:"id"`
Update func(ctx context.Context, e proteus.ContextExecutor, p Product) (int64, error) `proq:"update Product set name = :p.Name:, cost = :p.Cost: where id = :p.Id:" prop:"p"`
FindByNameAndCost func(ctx context.Context, q proteus.ContextQuerier, name string, cost float64) ([]Product, error) `proq:"select * from Product where name=:name: and cost=:cost:" prop:"name,cost"`
}
type ProductDao interface {
FindById(context.Context, proteus.ContextQuerier, int) (Product, error)
Update(context.Context, proteus.ContextExecutor, Product) (int64, error)
FindByNameAndCost(context.Context, proteus.ContextQuerier, string, float64) ([]Product, error)
}
type productWrapper struct {
ProductDaoS
}
func (pw productWrapper) FindById(ctx context.Context, q proteus.ContextQuerier, id int) (Product, error) {
return pw.ProductDaoS.FindById(ctx, q, id)
}
func (pw productWrapper) Update(ctx context.Context, e proteus.ContextExecutor, p Product) (int64, error) {
return pw.ProductDaoS.Update(ctx, e, p)
}
func (pw productWrapper) FindByNameAndCost(ctx context.Context, q proteus.ContextQuerier, n string, c float64) ([]Product, error) {
return pw.ProductDaoS.FindByNameAndCost(ctx, q, n, c)
}
func NewProductDao(ctx context.Context) ProductDao {
p := ProductDaoS{}
err := proteus.ShouldBuild(ctx, &p,proteus.Sqlite)
if err != nil {
panic(err)
}
return productWrapper{p}
}
A future version of Proteus may include a tool that can be used with go generate to automatically create the wrapper and interface.
2. Why do I have to specify the parameter names with a struct tag?
This is another limitation of go's reflection API. The names of parameters are not available at runtime to be inspected, and must be supplied by another way in order to be referenced in a query. If you do not want to use a prop struct tag, you can use positional parameters ($1, $2, etc.) instead.
In order to avoid tying the client code to one particular implementation, Proteus includes its own logger that can be bridged to any other Go logger.
By default, Proteus will log nothing. The simplest way to change the amount of information logged by Proteus is by calling the function proteus.SetLogLevel
.
This function takes in a value of type logger.Level
.
If you are using the proteus.ShouldBuild
function to generate your DAOs, you can supply a logging level by passing in the context returned by the function logger.WithLevel
.
This value is overridden by the logging level set by proteus.SetLogLevel
.
You can also include additional values in the logs by passing in the context returned by the function logger.WithValues
. This function adds one or more logger.Pair
values to the context.
If you are using the context.Context
support in Proteus 0.10.0 and later, the logger level can be supplied in the context passed into the function. This will override any logger level
specified when proteus.ShouldBuild
was invoked. You can also supply additional logging fields for the function call by using a context returned by the logger.WithValues
function.
All Proteus logging output include 3 default fields (in order):
- time (value is a
time.Time
in UTC) - level (the level of the log as a
logger.Level
) - message (the message supplied with the log
The default logger provided with the Proteus logging package outputs to os.Stdout
in a JSON format. The default logger implementation is configurable; you can
specify a different io.Writer
by using the call:
logger.Config(logger.DefaultLogger{
Writer: myWriterImpl,
})
The format of the output of the DefaultLogger can be configured by supplying a logger.Formatter
:
logger.Config(logger.DefaultLogger{
Writer: myWriterImpl,
Formatter: myFormatter,
})
A helper type logger.FormatterFunc
will turn any function with the signature func(vals ...interface{}) string
into a logger.Formatter
.
The first 6 values passed to the Format
method are:
position | value |
---|---|
0 | "time" |
1 | a time.Time in UTC |
2 | "level" |
3 | a logger.Level |
4 | "message" |
5 | the message for the log |
If you want to supply your own logger implementation, pass an implementation
of logger.Logger
into logger.Config
. This interface matches the definition used by go-kit. The default parameters are in the
order specified above. There is a logger.LoggerFunc
helper type to convert
any function with the signature of func(vals ...interface{}) error
into a logger.Logger
.
Feel free to use this logger within your own code. If this logger proves to be useful, it might be broken into its own top-level package.
There are more interesting features coming to Proteus. They are (in likely order of implementation):
-
Build
in
clauses using a field from a slice of struct or map -
Generate batch
values
clauses using a slice of struct or map -
more expansive performance measurement support and per-request logging control
-
go generate tool to create a wrapper struct and interface for a Proteus DAO
-
API implementations for nonSQL data stores and HTTP requests
-
Additional struct tags to generate basic CRUD queries automatically. This is about as far as I'd go in implementing ORM-like features. The goal for Proteus is to be an adapter between a data source and business logic, not to define your entire programming model.