Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content

conal/talk-2018-essence-of-ad

Repository files navigation

The simple essence of automatic differentiation

Abstract

Automatic differentiation (AD) in reverse mode (RAD) is a central component of deep learning and other uses of large-scale optimization. Commonly used RAD algorithms such as backpropagation, however, are complex and stateful, hindering deep understanding, improvement, and parallel execution. This talk develops a simple, generalized AD algorithm calculated from a simple, natural specification. The general algorithm is then specialized by varying the representation of derivatives. In particular, applying well-known constructions to a naive representation yields two RAD algorithms that are far simpler than previously known. In contrast to commonly used RAD implementations, the algorithms defined here involve no graphs, tapes, variables, partial derivatives, or mutation. They are inherently parallel-friendly, correct by construction, and usable directly from an existing programming language with no need for new data types or programming style, thanks to use of an AD-agnostic compiler plugin.

About

The simple essence of automatic differentiation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published