Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content

feat: add weekly contest 368 #1862

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Oct 22, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
101 changes: 101 additions & 0 deletions solution/2900-2999/2908.Minimum Sum of Mountain Triplets I/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
# [2908. 元素和最小的山形三元组 I](https://leetcode.cn/problems/minimum-sum-of-mountain-triplets-i)

[English Version](/solution/2900-2999/2908.Minimum%20Sum%20of%20Mountain%20Triplets%20I/README_EN.md)

## 题目描述

<!-- 这里写题目描述 -->

<p>给你一个下标从 <strong>0</strong> 开始的整数数组 <code>nums</code> 。</p>

<p>如果下标三元组 <code>(i, j, k)</code> 满足下述全部条件,则认为它是一个 <strong>山形三元组</strong> :</p>

<ul>
<li><code>i &lt; j &lt; k</code></li>
<li><code>nums[i] &lt; nums[j]</code> 且 <code>nums[k] &lt; nums[j]</code></li>
</ul>

<p>请你找出 <code>nums</code> 中 <strong>元素和最小</strong> 的山形三元组,并返回其 <strong>元素和</strong> 。如果不存在满足条件的三元组,返回 <code>-1</code> 。</p>

<p>&nbsp;</p>

<p><strong class="example">示例 1:</strong></p>

<pre>
<strong>输入:</strong>nums = [8,6,1,5,3]
<strong>输出:</strong>9
<strong>解释:</strong>三元组 (2, 3, 4) 是一个元素和等于 9 的山形三元组,因为:
- 2 &lt; 3 &lt; 4
- nums[2] &lt; nums[3] 且 nums[4] &lt; nums[3]
这个三元组的元素和等于 nums[2] + nums[3] + nums[4] = 9 。可以证明不存在元素和小于 9 的山形三元组。
</pre>

<p><strong class="example">示例 2:</strong></p>

<pre>
<strong>输入:</strong>nums = [5,4,8,7,10,2]
<strong>输出:</strong>13
<strong>解释:</strong>三元组 (1, 3, 5) 是一个元素和等于 13 的山形三元组,因为:
- 1 &lt; 3 &lt; 5
- nums[1] &lt; nums[3] 且 nums[5] &lt; nums[3]
这个三元组的元素和等于 nums[1] + nums[3] + nums[5] = 13 。可以证明不存在元素和小于 13 的山形三元组。
</pre>

<p><strong class="example">示例 3:</strong></p>

<pre>
<strong>输入:</strong>nums = [6,5,4,3,4,5]
<strong>输出:</strong>-1
<strong>解释:</strong>可以证明 nums 中不存在山形三元组。
</pre>

<p>&nbsp;</p>

<p><strong>提示:</strong></p>

<ul>
<li><code>3 &lt;= nums.length &lt;= 50</code></li>
<li><code>1 &lt;= nums[i] &lt;= 50</code></li>
</ul>

## 解法

<!-- 这里可写通用的实现逻辑 -->

<!-- tabs:start -->

### **Python3**

<!-- 这里可写当前语言的特殊实现逻辑 -->

```python

```

### **Java**

<!-- 这里可写当前语言的特殊实现逻辑 -->

```java

```

### **C++**

```cpp

```

### **Go**

```go

```

### **...**

```

```

<!-- tabs:end -->
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
# [2908. Minimum Sum of Mountain Triplets I](https://leetcode.com/problems/minimum-sum-of-mountain-triplets-i)

[中文文档](/solution/2900-2999/2908.Minimum%20Sum%20of%20Mountain%20Triplets%20I/README.md)

## Description

<p>You are given a <strong>0-indexed</strong> array <code>nums</code> of integers.</p>

<p>A triplet of indices <code>(i, j, k)</code> is a <strong>mountain</strong> if:</p>

<ul>
<li><code>i &lt; j &lt; k</code></li>
<li><code>nums[i] &lt; nums[j]</code> and <code>nums[k] &lt; nums[j]</code></li>
</ul>

<p>Return <em>the <strong>minimum possible sum</strong> of a mountain triplet of</em> <code>nums</code>. <em>If no such triplet exists, return</em> <code>-1</code>.</p>

<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>

<pre>
<strong>Input:</strong> nums = [8,6,1,5,3]
<strong>Output:</strong> 9
<strong>Explanation:</strong> Triplet (2, 3, 4) is a mountain triplet of sum 9 since:
- 2 &lt; 3 &lt; 4
- nums[2] &lt; nums[3] and nums[4] &lt; nums[3]
And the sum of this triplet is nums[2] + nums[3] + nums[4] = 9. It can be shown that there are no mountain triplets with a sum of less than 9.
</pre>

<p><strong class="example">Example 2:</strong></p>

<pre>
<strong>Input:</strong> nums = [5,4,8,7,10,2]
<strong>Output:</strong> 13
<strong>Explanation:</strong> Triplet (1, 3, 5) is a mountain triplet of sum 13 since:
- 1 &lt; 3 &lt; 5
- nums[1] &lt; nums[3] and nums[5] &lt; nums[3]
And the sum of this triplet is nums[1] + nums[3] + nums[5] = 13. It can be shown that there are no mountain triplets with a sum of less than 13.
</pre>

<p><strong class="example">Example 3:</strong></p>

<pre>
<strong>Input:</strong> nums = [6,5,4,3,4,5]
<strong>Output:</strong> -1
<strong>Explanation:</strong> It can be shown that there are no mountain triplets in nums.
</pre>

<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>

<ul>
<li><code>3 &lt;= nums.length &lt;= 50</code></li>
<li><code>1 &lt;= nums[i] &lt;= 50</code></li>
</ul>

## Solutions

<!-- tabs:start -->

### **Python3**

```python

```

### **Java**

```java

```

### **C++**

```cpp

```

### **Go**

```go

```

### **...**

```

```

<!-- tabs:end -->
101 changes: 101 additions & 0 deletions solution/2900-2999/2909.Minimum Sum of Mountain Triplets II/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
# [2909. 元素和最小的山形三元组 II](https://leetcode.cn/problems/minimum-sum-of-mountain-triplets-ii)

[English Version](/solution/2900-2999/2909.Minimum%20Sum%20of%20Mountain%20Triplets%20II/README_EN.md)

## 题目描述

<!-- 这里写题目描述 -->

<p>给你一个下标从 <strong>0</strong> 开始的整数数组 <code>nums</code> 。</p>

<p>如果下标三元组 <code>(i, j, k)</code> 满足下述全部条件,则认为它是一个 <strong>山形三元组</strong> :</p>

<ul>
<li><code>i &lt; j &lt; k</code></li>
<li><code>nums[i] &lt; nums[j]</code> 且 <code>nums[k] &lt; nums[j]</code></li>
</ul>

<p>请你找出 <code>nums</code> 中 <strong>元素和最小</strong> 的山形三元组,并返回其 <strong>元素和</strong> 。如果不存在满足条件的三元组,返回 <code>-1</code> 。</p>

<p>&nbsp;</p>

<p><strong class="example">示例 1:</strong></p>

<pre>
<strong>输入:</strong>nums = [8,6,1,5,3]
<strong>输出:</strong>9
<strong>解释:</strong>三元组 (2, 3, 4) 是一个元素和等于 9 的山形三元组,因为:
- 2 &lt; 3 &lt; 4
- nums[2] &lt; nums[3] 且 nums[4] &lt; nums[3]
这个三元组的元素和等于 nums[2] + nums[3] + nums[4] = 9 。可以证明不存在元素和小于 9 的山形三元组。
</pre>

<p><strong class="example">示例 2:</strong></p>

<pre>
<strong>输入:</strong>nums = [5,4,8,7,10,2]
<strong>输出:</strong>13
<strong>解释:</strong>三元组 (1, 3, 5) 是一个元素和等于 13 的山形三元组,因为:
- 1 &lt; 3 &lt; 5
- nums[1] &lt; nums[3] 且 nums[5] &lt; nums[3]
这个三元组的元素和等于 nums[1] + nums[3] + nums[5] = 13 。可以证明不存在元素和小于 13 的山形三元组。
</pre>

<p><strong class="example">示例 3:</strong></p>

<pre>
<strong>输入:</strong>nums = [6,5,4,3,4,5]
<strong>输出:</strong>-1
<strong>解释:</strong>可以证明 nums 中不存在山形三元组。
</pre>

<p>&nbsp;</p>

<p><strong>提示:</strong></p>

<ul>
<li><code>3 &lt;= nums.length &lt;= 10<sup>5</sup></code></li>
<li><code>1 &lt;= nums[i] &lt;= 10<sup>8</sup></code></li>
</ul>

## 解法

<!-- 这里可写通用的实现逻辑 -->

<!-- tabs:start -->

### **Python3**

<!-- 这里可写当前语言的特殊实现逻辑 -->

```python

```

### **Java**

<!-- 这里可写当前语言的特殊实现逻辑 -->

```java

```

### **C++**

```cpp

```

### **Go**

```go

```

### **...**

```

```

<!-- tabs:end -->
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
# [2909. Minimum Sum of Mountain Triplets II](https://leetcode.com/problems/minimum-sum-of-mountain-triplets-ii)

[中文文档](/solution/2900-2999/2909.Minimum%20Sum%20of%20Mountain%20Triplets%20II/README.md)

## Description

<p>You are given a <strong>0-indexed</strong> array <code>nums</code> of integers.</p>

<p>A triplet of indices <code>(i, j, k)</code> is a <strong>mountain</strong> if:</p>

<ul>
<li><code>i &lt; j &lt; k</code></li>
<li><code>nums[i] &lt; nums[j]</code> and <code>nums[k] &lt; nums[j]</code></li>
</ul>

<p>Return <em>the <strong>minimum possible sum</strong> of a mountain triplet of</em> <code>nums</code>. <em>If no such triplet exists, return</em> <code>-1</code>.</p>

<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>

<pre>
<strong>Input:</strong> nums = [8,6,1,5,3]
<strong>Output:</strong> 9
<strong>Explanation:</strong> Triplet (2, 3, 4) is a mountain triplet of sum 9 since:
- 2 &lt; 3 &lt; 4
- nums[2] &lt; nums[3] and nums[4] &lt; nums[3]
And the sum of this triplet is nums[2] + nums[3] + nums[4] = 9. It can be shown that there are no mountain triplets with a sum of less than 9.
</pre>

<p><strong class="example">Example 2:</strong></p>

<pre>
<strong>Input:</strong> nums = [5,4,8,7,10,2]
<strong>Output:</strong> 13
<strong>Explanation:</strong> Triplet (1, 3, 5) is a mountain triplet of sum 13 since:
- 1 &lt; 3 &lt; 5
- nums[1] &lt; nums[3] and nums[5] &lt; nums[3]
And the sum of this triplet is nums[1] + nums[3] + nums[5] = 13. It can be shown that there are no mountain triplets with a sum of less than 13.
</pre>

<p><strong class="example">Example 3:</strong></p>

<pre>
<strong>Input:</strong> nums = [6,5,4,3,4,5]
<strong>Output:</strong> -1
<strong>Explanation:</strong> It can be shown that there are no mountain triplets in nums.
</pre>

<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>

<ul>
<li><code>3 &lt;= nums.length &lt;= 10<sup>5</sup></code></li>
<li><code>1 &lt;= nums[i] &lt;= 10<sup>8</sup></code></li>
</ul>

## Solutions

<!-- tabs:start -->

### **Python3**

```python

```

### **Java**

```java

```

### **C++**

```cpp

```

### **Go**

```go

```

### **...**

```

```

<!-- tabs:end -->
Loading