Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content

feat: add solutions to lc problem: No.2911 #1874

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Oct 25, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@

枚举结束,返回答案即可。

时间复杂度 $O(n \times \log^2 n)$,空间复杂度 $O(\log n)$。其中 $n$ 为给定的正整数。
时间复杂度 $O(n^{1 + 2 \log_{10}^2})$,空间复杂度 $O(\log n)$。其中 $n$ 为给定的正整数。

<!-- tabs:start -->

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -66,27 +66,219 @@
<!-- 这里可写当前语言的特殊实现逻辑 -->

```python

class Solution:
def minimumChanges(self, s: str, k: int) -> int:
n = len(s)
g = [[inf] * (n + 1) for _ in range(n + 1)]
for i in range(1, n + 1):
for j in range(i, n + 1):
m = j - i + 1
for d in range(1, m):
if m % d == 0:
cnt = 0
for l in range(m):
r = (m // d - 1 - l // d) * d + l % d
if l >= r:
break
if s[i - 1 + l] != s[i - 1 + r]:
cnt += 1
g[i][j] = min(g[i][j], cnt)

f = [[inf] * (k + 1) for _ in range(n + 1)]
f[0][0] = 0
for i in range(1, n + 1):
for j in range(1, k + 1):
for h in range(i - 1):
f[i][j] = min(f[i][j], f[h][j - 1] + g[h + 1][i])
return f[n][k]
```

### **Java**

<!-- 这里可写当前语言的特殊实现逻辑 -->

```java

class Solution {
public int minimumChanges(String s, int k) {
int n = s.length();
int[][] g = new int[n + 1][n + 1];
int[][] f = new int[n + 1][k + 1];
final int inf = 1 << 30;
for (int i = 0; i <= n; ++i) {
Arrays.fill(g[i], inf);
Arrays.fill(f[i], inf);
}
for (int i = 1; i <= n; ++i) {
for (int j = i; j <= n; ++j) {
int m = j - i + 1;
for (int d = 1; d < m; ++d) {
if (m % d == 0) {
int cnt = 0;
for (int l = 0; l < m; ++l) {
int r = (m / d - 1 - l / d) * d + l % d;
if (l >= r) {
break;
}
if (s.charAt(i - 1 + l) != s.charAt(i - 1 + r)) {
++cnt;
}
}
g[i][j] = Math.min(g[i][j], cnt);
}
}
}
}
f[0][0] = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= k; ++j) {
for (int h = 0; h < i - 1; ++h) {
f[i][j] = Math.min(f[i][j], f[h][j - 1] + g[h + 1][i]);
}
}
}
return f[n][k];
}
}
```

### **C++**

```cpp

class Solution {
public:
int minimumChanges(string s, int k) {
int n = s.size();
int g[n + 1][n + 1];
int f[n + 1][k + 1];
memset(g, 0x3f, sizeof(g));
memset(f, 0x3f, sizeof(f));
f[0][0] = 0;
for (int i = 1; i <= n; ++i) {
for (int j = i; j <= n; ++j) {
int m = j - i + 1;
for (int d = 1; d < m; ++d) {
if (m % d == 0) {
int cnt = 0;
for (int l = 0; l < m; ++l) {
int r = (m / d - 1 - l / d) * d + l % d;
if (l >= r) {
break;
}
if (s[i - 1 + l] != s[i - 1 + r]) {
++cnt;
}
}
g[i][j] = min(g[i][j], cnt);
}
}
}
}
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= k; ++j) {
for (int h = 0; h < i - 1; ++h) {
f[i][j] = min(f[i][j], f[h][j - 1] + g[h + 1][i]);
}
}
}
return f[n][k];
}
};
```

### **Go**

```go
func minimumChanges(s string, k int) int {
n := len(s)
g := make([][]int, n+1)
f := make([][]int, n+1)
const inf int = 1 << 30
for i := range g {
g[i] = make([]int, n+1)
f[i] = make([]int, k+1)
for j := range g[i] {
g[i][j] = inf
}
for j := range f[i] {
f[i][j] = inf
}
}
f[0][0] = 0
for i := 1; i <= n; i++ {
for j := i; j <= n; j++ {
m := j - i + 1
for d := 1; d < m; d++ {
if m%d == 0 {
cnt := 0
for l := 0; l < m; l++ {
r := (m/d-1-l/d)*d + l%d
if l >= r {
break
}
if s[i-1+l] != s[i-1+r] {
cnt++
}
}
g[i][j] = min(g[i][j], cnt)
}
}
}
}
for i := 1; i <= n; i++ {
for j := 1; j <= k; j++ {
for h := 0; h < i-1; h++ {
f[i][j] = min(f[i][j], f[h][j-1]+g[h+1][i])
}
}
}
return f[n][k]
}

func min(a, b int) int {
if a < b {
return a
}
return b
}
```

### **TypeScript**

```ts
function minimumChanges(s: string, k: number): number {
const n = s.length;
const g = Array.from({ length: n + 1 }, () => Array.from({ length: n + 1 }, () => Infinity));
const f = Array.from({ length: n + 1 }, () => Array.from({ length: k + 1 }, () => Infinity));
f[0][0] = 0;
for (let i = 1; i <= n; ++i) {
for (let j = 1; j <= n; ++j) {
const m = j - i + 1;
for (let d = 1; d < m; ++d) {
if (m % d === 0) {
let cnt = 0;
for (let l = 0; l < m; ++l) {
const r = (((m / d) | 0) - 1 - ((l / d) | 0)) * d + (l % d);
if (l >= r) {
break;
}
if (s[i - 1 + l] !== s[i - 1 + r]) {
++cnt;
}
}
g[i][j] = Math.min(g[i][j], cnt);
}
}
}
}
for (let i = 1; i <= n; ++i) {
for (let j = 1; j <= k; ++j) {
for (let h = 0; h < i - 1; ++h) {
f[i][j] = Math.min(f[i][j], f[h][j - 1] + g[h + 1][i]);
}
}
}
return f[n][k];
}
```

### **...**
Expand Down
Loading