Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content

feat: add solutions to lc problem: No.516 #2500

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
93 changes: 62 additions & 31 deletions solution/0500-0599/0516.Longest Palindromic Subsequence/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,44 +41,54 @@

## 解法

### 方法一
### 方法一:动态规划

我们定义 $f[i][j]$ 表示字符串 $s$ 的第 $i$ 个字符到第 $j$ 个字符之间的最长回文子序列的长度。初始时 $f[i][i] = 1$,其余位置的值均为 $0$。

如果 $s[i] = s[j]$,那么 $f[i][j] = f[i + 1][j - 1] + 2$;否则 $f[i][j] = \max(f[i + 1][j], f[i][j - 1])$。

由于 $f[i][j]$ 的值与 $f[i + 1][j - 1]$, $f[i + 1][j]$, $f[i][j - 1]$ 有关,所以我们应该从大到小枚举 $i$,从小到大枚举 $j$。

答案即为 $f[0][n - 1]$。

时间复杂度 $O(n^2)$,空间复杂度 $O(n^2)$。其中 $n$ 为字符串 $s$ 的长度。

<!-- tabs:start -->

```python
class Solution:
def longestPalindromeSubseq(self, s: str) -> int:
n = len(s)
dp = [[0] * n for _ in range(n)]
f = [[0] * n for _ in range(n)]
for i in range(n):
dp[i][i] = 1
for j in range(1, n):
for i in range(j - 1, -1, -1):
f[i][i] = 1
for i in range(n - 1, -1, -1):
for j in range(i + 1, n):
if s[i] == s[j]:
dp[i][j] = dp[i + 1][j - 1] + 2
f[i][j] = f[i + 1][j - 1] + 2
else:
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1])
return dp[0][-1]
f[i][j] = max(f[i + 1][j], f[i][j - 1])
return f[0][-1]
```

```java
class Solution {
public int longestPalindromeSubseq(String s) {
int n = s.length();
int[][] dp = new int[n][n];
int[][] f = new int[n][n];
for (int i = 0; i < n; ++i) {
dp[i][i] = 1;
f[i][i] = 1;
}
for (int j = 1; j < n; ++j) {
for (int i = j - 1; i >= 0; --i) {
for (int i = n - 1; i >= 0; --i) {
for (int j = i + 1; j < n; ++j) {
if (s.charAt(i) == s.charAt(j)) {
dp[i][j] = dp[i + 1][j - 1] + 2;
f[i][j] = f[i + 1][j - 1] + 2;
} else {
dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
f[i][j] = Math.max(f[i + 1][j], f[i][j - 1]);
}
}
}
return dp[0][n - 1];
return f[0][n - 1];
}
}
```
Expand All @@ -88,42 +98,63 @@ class Solution {
public:
int longestPalindromeSubseq(string s) {
int n = s.size();
vector<vector<int>> dp(n, vector<int>(n, 0));
int f[n][n];
memset(f, 0, sizeof(f));
for (int i = 0; i < n; ++i) {
dp[i][i] = 1;
f[i][i] = 1;
}
for (int j = 1; j < n; ++j) {
for (int i = j - 1; i >= 0; --i) {
for (int i = n - 1; ~i; --i) {
for (int j = i + 1; j < n; ++j) {
if (s[i] == s[j]) {
dp[i][j] = dp[i + 1][j - 1] + 2;
f[i][j] = f[i + 1][j - 1] + 2;
} else {
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
f[i][j] = max(f[i + 1][j], f[i][j - 1]);
}
}
}
return dp[0][n - 1];
return f[0][n - 1];
}
};
```

```go
func longestPalindromeSubseq(s string) int {
n := len(s)
dp := make([][]int, n)
for i := 0; i < n; i++ {
dp[i] = make([]int, n)
dp[i][i] = 1
f := make([][]int, n)
for i := range f {
f[i] = make([]int, n)
f[i][i] = 1
}
for j := 1; j < n; j++ {
for i := j - 1; i >= 0; i-- {
for i := n - 2; i >= 0; i-- {
for j := i + 1; j < n; j++ {
if s[i] == s[j] {
dp[i][j] = dp[i+1][j-1] + 2
f[i][j] = f[i+1][j-1] + 2
} else {
dp[i][j] = max(dp[i+1][j], dp[i][j-1])
f[i][j] = max(f[i+1][j], f[i][j-1])
}
}
}
return dp[0][n-1]
return f[0][n-1]
}
```

```ts
function longestPalindromeSubseq(s: string): number {
const n = s.length;
const f: number[][] = Array.from({ length: n }, () => Array(n).fill(0));
for (let i = 0; i < n; ++i) {
f[i][i] = 1;
}
for (let i = n - 2; ~i; --i) {
for (let j = i + 1; j < n; ++j) {
if (s[i] === s[j]) {
f[i][j] = f[i + 1][j - 1] + 2;
} else {
f[i][j] = Math.max(f[i + 1][j], f[i][j - 1]);
}
}
}
return f[0][n - 1];
}
```

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -37,44 +37,54 @@

## Solutions

### Solution 1
### Solution 1: Dynamic Programming

We define $f[i][j]$ as the length of the longest palindromic subsequence from the $i$-th character to the $j$-th character in string $s$. Initially, $f[i][i] = 1$, and the values of other positions are all $0$.

If $s[i] = s[j]$, then $f[i][j] = f[i + 1][j - 1] + 2$; otherwise, $f[i][j] = \max(f[i + 1][j], f[i][j - 1])$.

Since the value of $f[i][j]$ is related to $f[i + 1][j - 1]$, $f[i + 1][j]$, and $f[i][j - 1]$, we should enumerate $i$ from large to small, and enumerate $j$ from small to large.

The answer is $f[0][n - 1]$.

The time complexity is $O(n^2)$, and the space complexity is $O(n^2)$. Where $n$ is the length of the string $s$.

<!-- tabs:start -->

```python
class Solution:
def longestPalindromeSubseq(self, s: str) -> int:
n = len(s)
dp = [[0] * n for _ in range(n)]
f = [[0] * n for _ in range(n)]
for i in range(n):
dp[i][i] = 1
for j in range(1, n):
for i in range(j - 1, -1, -1):
f[i][i] = 1
for i in range(n - 1, -1, -1):
for j in range(i + 1, n):
if s[i] == s[j]:
dp[i][j] = dp[i + 1][j - 1] + 2
f[i][j] = f[i + 1][j - 1] + 2
else:
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1])
return dp[0][-1]
f[i][j] = max(f[i + 1][j], f[i][j - 1])
return f[0][-1]
```

```java
class Solution {
public int longestPalindromeSubseq(String s) {
int n = s.length();
int[][] dp = new int[n][n];
int[][] f = new int[n][n];
for (int i = 0; i < n; ++i) {
dp[i][i] = 1;
f[i][i] = 1;
}
for (int j = 1; j < n; ++j) {
for (int i = j - 1; i >= 0; --i) {
for (int i = n - 1; i >= 0; --i) {
for (int j = i + 1; j < n; ++j) {
if (s.charAt(i) == s.charAt(j)) {
dp[i][j] = dp[i + 1][j - 1] + 2;
f[i][j] = f[i + 1][j - 1] + 2;
} else {
dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
f[i][j] = Math.max(f[i + 1][j], f[i][j - 1]);
}
}
}
return dp[0][n - 1];
return f[0][n - 1];
}
}
```
Expand All @@ -84,42 +94,63 @@ class Solution {
public:
int longestPalindromeSubseq(string s) {
int n = s.size();
vector<vector<int>> dp(n, vector<int>(n, 0));
int f[n][n];
memset(f, 0, sizeof(f));
for (int i = 0; i < n; ++i) {
dp[i][i] = 1;
f[i][i] = 1;
}
for (int j = 1; j < n; ++j) {
for (int i = j - 1; i >= 0; --i) {
for (int i = n - 1; ~i; --i) {
for (int j = i + 1; j < n; ++j) {
if (s[i] == s[j]) {
dp[i][j] = dp[i + 1][j - 1] + 2;
f[i][j] = f[i + 1][j - 1] + 2;
} else {
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
f[i][j] = max(f[i + 1][j], f[i][j - 1]);
}
}
}
return dp[0][n - 1];
return f[0][n - 1];
}
};
```

```go
func longestPalindromeSubseq(s string) int {
n := len(s)
dp := make([][]int, n)
for i := 0; i < n; i++ {
dp[i] = make([]int, n)
dp[i][i] = 1
f := make([][]int, n)
for i := range f {
f[i] = make([]int, n)
f[i][i] = 1
}
for j := 1; j < n; j++ {
for i := j - 1; i >= 0; i-- {
for i := n - 2; i >= 0; i-- {
for j := i + 1; j < n; j++ {
if s[i] == s[j] {
dp[i][j] = dp[i+1][j-1] + 2
f[i][j] = f[i+1][j-1] + 2
} else {
dp[i][j] = max(dp[i+1][j], dp[i][j-1])
f[i][j] = max(f[i+1][j], f[i][j-1])
}
}
}
return dp[0][n-1]
return f[0][n-1]
}
```

```ts
function longestPalindromeSubseq(s: string): number {
const n = s.length;
const f: number[][] = Array.from({ length: n }, () => Array(n).fill(0));
for (let i = 0; i < n; ++i) {
f[i][i] = 1;
}
for (let i = n - 2; ~i; --i) {
for (let j = i + 1; j < n; ++j) {
if (s[i] === s[j]) {
f[i][j] = f[i + 1][j - 1] + 2;
} else {
f[i][j] = Math.max(f[i + 1][j], f[i][j - 1]);
}
}
}
return f[0][n - 1];
}
```

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,19 +2,20 @@ class Solution {
public:
int longestPalindromeSubseq(string s) {
int n = s.size();
vector<vector<int>> dp(n, vector<int>(n, 0));
int f[n][n];
memset(f, 0, sizeof(f));
for (int i = 0; i < n; ++i) {
dp[i][i] = 1;
f[i][i] = 1;
}
for (int j = 1; j < n; ++j) {
for (int i = j - 1; i >= 0; --i) {
for (int i = n - 1; ~i; --i) {
for (int j = i + 1; j < n; ++j) {
if (s[i] == s[j]) {
dp[i][j] = dp[i + 1][j - 1] + 2;
f[i][j] = f[i + 1][j - 1] + 2;
} else {
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
f[i][j] = max(f[i + 1][j], f[i][j - 1]);
}
}
}
return dp[0][n - 1];
return f[0][n - 1];
}
};
Original file line number Diff line number Diff line change
@@ -1,18 +1,18 @@
func longestPalindromeSubseq(s string) int {
n := len(s)
dp := make([][]int, n)
for i := 0; i < n; i++ {
dp[i] = make([]int, n)
dp[i][i] = 1
f := make([][]int, n)
for i := range f {
f[i] = make([]int, n)
f[i][i] = 1
}
for j := 1; j < n; j++ {
for i := j - 1; i >= 0; i-- {
for i := n - 2; i >= 0; i-- {
for j := i + 1; j < n; j++ {
if s[i] == s[j] {
dp[i][j] = dp[i+1][j-1] + 2
f[i][j] = f[i+1][j-1] + 2
} else {
dp[i][j] = max(dp[i+1][j], dp[i][j-1])
f[i][j] = max(f[i+1][j], f[i][j-1])
}
}
}
return dp[0][n-1]
return f[0][n-1]
}
Original file line number Diff line number Diff line change
@@ -1,19 +1,19 @@
class Solution {
public int longestPalindromeSubseq(String s) {
int n = s.length();
int[][] dp = new int[n][n];
int[][] f = new int[n][n];
for (int i = 0; i < n; ++i) {
dp[i][i] = 1;
f[i][i] = 1;
}
for (int j = 1; j < n; ++j) {
for (int i = j - 1; i >= 0; --i) {
for (int i = n - 1; i >= 0; --i) {
for (int j = i + 1; j < n; ++j) {
if (s.charAt(i) == s.charAt(j)) {
dp[i][j] = dp[i + 1][j - 1] + 2;
f[i][j] = f[i + 1][j - 1] + 2;
} else {
dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
f[i][j] = Math.max(f[i + 1][j], f[i][j - 1]);
}
}
}
return dp[0][n - 1];
return f[0][n - 1];
}
}
Loading