Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content

feat: add solutions to lc problem: No.0101 #3910

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Dec 31, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
165 changes: 56 additions & 109 deletions solution/0100-0199/0101.Symmetric Tree/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -58,13 +58,13 @@ tags:

### 方法一:递归

我们设计一个函数 $dfs(root1, root2)$,用于判断两个二叉树是否对称。答案即为 $dfs(root, root)$。
我们设计一个函数 $\textit{dfs}(\textit{root1}, \textit{root2})$,用于判断两个二叉树是否对称。答案即为 $\textit{dfs}(\textit{root.left}, \textit{root.right})$。

函数 $dfs(root1, root2)$ 的逻辑如下:
函数 $\textit{dfs}(\textit{root1}, \textit{root2})$ 的逻辑如下:

- 如果 $root1$ 和 $root2$ 都为空,则两个二叉树对称,返回 `true`;
- 如果 $root1$ 和 $root2$ 中只有一个为空,或者 $root1.val \neq root2.val$,则两个二叉树不对称,返回 `false`;
- 否则,判断 $root1$ 的左子树和 $root2$ 的右子树是否对称,以及 $root1$ 的右子树和 $root2$ 的左子树是否对称,这里使用了递归。
- 如果 $\textit{root1}$ 和 $\textit{root2}$ 都为空,则两个二叉树对称,返回 `true`;
- 如果 $\textit{root1}$ 和 $\textit{root2}$ 中只有一个为空,或者 $\textit{root1.val} \neq \textit{root2.val}$
- 否则,判断 $\textit{root1}$ 的左子树和 $\textit{root2}$ 的右子树是否对称,以及 $\textit{root1}$ 的右子树和 $\textit{root2}$ 的左子树是否对称,这里使用了递归。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉树的节点数。

Expand All @@ -81,14 +81,14 @@ tags:
# self.right = right
class Solution:
def isSymmetric(self, root: Optional[TreeNode]) -> bool:
def dfs(root1, root2):
if root1 is None and root2 is None:
def dfs(root1: Optional[TreeNode], root2: Optional[TreeNode]) -> bool:
if root1 == root2:
return True
if root1 is None or root2 is None or root1.val != root2.val:
return False
return dfs(root1.left, root2.right) and dfs(root1.right, root2.left)

return dfs(root, root)
return dfs(root.left, root.right)
```

#### Java
Expand All @@ -111,11 +111,11 @@ class Solution:
*/
class Solution {
public boolean isSymmetric(TreeNode root) {
return dfs(root, root);
return dfs(root.left, root.right);
}

private boolean dfs(TreeNode root1, TreeNode root2) {
if (root1 == null && root2 == null) {
if (root1 == root2) {
return true;
}
if (root1 == null || root2 == null || root1.val != root2.val) {
Expand Down Expand Up @@ -143,12 +143,16 @@ class Solution {
class Solution {
public:
bool isSymmetric(TreeNode* root) {
function<bool(TreeNode*, TreeNode*)> dfs = [&](TreeNode* root1, TreeNode* root2) -> bool {
if (!root1 && !root2) return true;
if (!root1 || !root2 || root1->val != root2->val) return false;
auto dfs = [&](this auto&& dfs, TreeNode* root1, TreeNode* root2) -> bool {
if (root1 == root2) {
return true;
}
if (!root1 || !root2 || root1->val != root2->val) {
return false;
}
return dfs(root1->left, root2->right) && dfs(root1->right, root2->left);
};
return dfs(root, root);
return dfs(root->left, root->right);
}
};
```
Expand All @@ -165,17 +169,17 @@ public:
* }
*/
func isSymmetric(root *TreeNode) bool {
var dfs func(*TreeNode, *TreeNode) bool
var dfs func(root1, root2 *TreeNode) bool
dfs = func(root1, root2 *TreeNode) bool {
if root1 == nil && root2 == nil {
if root1 == root2 {
return true
}
if root1 == nil || root2 == nil || root1.Val != root2.Val {
return false
}
return dfs(root1.Left, root2.Right) && dfs(root1.Right, root2.Left)
}
return dfs(root, root)
return dfs(root.Left, root.Right)
}
```

Expand All @@ -196,17 +200,16 @@ func isSymmetric(root *TreeNode) bool {
* }
*/

const dfs = (root1: TreeNode | null, root2: TreeNode | null) => {
if (root1 == root2) {
return true;
}
if (root1 == null || root2 == null || root1.val != root2.val) {
return false;
}
return dfs(root1.left, root2.right) && dfs(root1.right, root2.left);
};

function isSymmetric(root: TreeNode | null): boolean {
const dfs = (root1: TreeNode | null, root2: TreeNode | null): boolean => {
if (root1 === root2) {
return true;
}
if (!root1 || !root2 || root1.val !== root2.val) {
return false;
}
return dfs(root1.left, root2.right) && dfs(root1.right, root2.left);
};
return dfs(root.left, root.right);
}
```
Expand Down Expand Up @@ -235,23 +238,25 @@ function isSymmetric(root: TreeNode | null): boolean {
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
fn dfs(root1: &Option<Rc<RefCell<TreeNode>>>, root2: &Option<Rc<RefCell<TreeNode>>>) -> bool {
if root1.is_none() && root2.is_none() {
return true;
}
if root1.is_none() || root2.is_none() {
return false;
pub fn is_symmetric(root: Option<Rc<RefCell<TreeNode>>>) -> bool {
fn dfs(root1: Option<Rc<RefCell<TreeNode>>>, root2: Option<Rc<RefCell<TreeNode>>>) -> bool {
match (root1, root2) {
(Some(node1), Some(node2)) => {
let node1 = node1.borrow();
let node2 = node2.borrow();
node1.val == node2.val
&& dfs(node1.left.clone(), node2.right.clone())
&& dfs(node1.right.clone(), node2.left.clone())
}
(None, None) => true,
_ => false,
}
}
let node1 = root1.as_ref().unwrap().borrow();
let node2 = root2.as_ref().unwrap().borrow();
node1.val == node2.val
&& Self::dfs(&node1.left, &node2.right)
&& Self::dfs(&node1.right, &node2.left)
}

pub fn is_symmetric(root: Option<Rc<RefCell<TreeNode>>>) -> bool {
let node = root.as_ref().unwrap().borrow();
Self::dfs(&node.left, &node.right)
match root {
Some(root) => dfs(root.borrow().left.clone(), root.borrow().right.clone()),
None => true,
}
}
}
```
Expand All @@ -272,79 +277,21 @@ impl Solution {
* @return {boolean}
*/
var isSymmetric = function (root) {
function dfs(root1, root2) {
if (!root1 && !root2) return true;
if (!root1 || !root2 || root1.val != root2.val) return false;
const dfs = (root1, root2) => {
if (root1 === root2) {
return true;
}
if (!root1 || !root2 || root1.val !== root2.val) {
return false;
}
return dfs(root1.left, root2.right) && dfs(root1.right, root2.left);
}
return dfs(root, root);
};
return dfs(root.left, root.right);
};
```

<!-- tabs:end -->

<!-- solution:end -->

<!-- solution:start -->

### 方法二

<!-- tabs:start -->

#### Rust

```rust
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::collections::VecDeque;
use std::rc::Rc;
impl Solution {
pub fn is_symmetric(root: Option<Rc<RefCell<TreeNode>>>) -> bool {
let root = root.unwrap();
let mut node = root.as_ref().borrow_mut();
let mut queue = VecDeque::new();
queue.push_back([node.left.take(), node.right.take()]);
while let Some([root1, root2]) = queue.pop_front() {
if root1.is_none() && root2.is_none() {
continue;
}
if root1.is_none() || root2.is_none() {
return false;
}
if let (Some(node1), Some(node2)) = (root1, root2) {
let mut node1 = node1.as_ref().borrow_mut();
let mut node2 = node2.as_ref().borrow_mut();
if node1.val != node2.val {
return false;
}
queue.push_back([node1.left.take(), node2.right.take()]);
queue.push_back([node1.right.take(), node2.left.take()]);
}
}
true
}
}
```

<!-- tabs:end -->

<!-- solution:end -->

<!-- problem:end -->
Loading
Loading