Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content

feat: add solutions to lc problem: No.0059 #4037

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 7, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
169 changes: 52 additions & 117 deletions solution/0000-0099/0059.Spiral Matrix II/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -52,13 +52,13 @@ tags:

### 方法一:模拟

直接模拟螺旋矩阵的生成过程
我们可以直接模拟螺旋矩阵的生成过程

定义一个二维数组 `ans`,用于存储螺旋矩阵。用 `i``j` 分别表示当前位置的行号和列号,用 `k` 表示当前的方向编号,`dirs` 表示方向编号与方向的对应关系。
定义一个二维数组 $\textit{ans}$,用于存储螺旋矩阵。用 $i$$j$ 分别表示当前位置的行号和列号,用 $k$ 表示当前的方向编号,$\textit{dirs}$ 表示方向编号与方向的对应关系。

`1` 开始,依次填入矩阵中的每个位置。每次填入一个位置后,计算下一个位置的行号和列号,如果下一个位置不在矩阵中或者已经被填过,则改变方向,再计算下一个位置的行号和列号。
$1$ 开始,依次填入矩阵中的每个位置。每次填入一个位置后,计算下一个位置的行号和列号,如果下一个位置不在矩阵中或者已经被填过,则改变方向,再计算下一个位置的行号和列号。

时间复杂度 $O(n^2)$,其中 $n$ 是矩阵的边长。忽略输出数组不计,空间复杂度 $O(1)$。
时间复杂度 $O(n^2)$,其中 $n$ 是矩阵的边长。忽略答案数组的空间消耗,空间复杂度 $O(1)$。

<!-- tabs:start -->

Expand All @@ -68,15 +68,14 @@ tags:
class Solution:
def generateMatrix(self, n: int) -> List[List[int]]:
ans = [[0] * n for _ in range(n)]
dirs = ((0, 1), (1, 0), (0, -1), (-1, 0))
dirs = (0, 1, 0, -1, 0)
i = j = k = 0
for v in range(1, n * n + 1):
ans[i][j] = v
x, y = i + dirs[k][0], j + dirs[k][1]
if x < 0 or y < 0 or x >= n or y >= n or ans[x][y]:
x, y = i + dirs[k], j + dirs[k + 1]
if x < 0 or x >= n or y < 0 or y >= n or ans[x][y]:
k = (k + 1) % 4
x, y = i + dirs[k][0], j + dirs[k][1]
i, j = x, y
i, j = i + dirs[k], j + dirs[k + 1]
return ans
```

Expand All @@ -86,18 +85,16 @@ class Solution:
class Solution {
public int[][] generateMatrix(int n) {
int[][] ans = new int[n][n];
final int[] dirs = {0, 1, 0, -1, 0};
int i = 0, j = 0, k = 0;
int[][] dirs = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
for (int v = 1; v <= n * n; ++v) {
ans[i][j] = v;
int x = i + dirs[k][0], y = j + dirs[k][1];
if (x < 0 || y < 0 || x >= n || y >= n || ans[x][y] > 0) {
int x = i + dirs[k], y = j + dirs[k + 1];
if (x < 0 || x >= n || y < 0 || y >= n || ans[x][y] != 0) {
k = (k + 1) % 4;
x = i + dirs[k][0];
y = j + dirs[k][1];
}
i = x;
j = y;
i += dirs[k];
j += dirs[k + 1];
}
return ans;
}
Expand All @@ -109,19 +106,18 @@ class Solution {
```cpp
class Solution {
public:
const int dirs[4][2] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};

vector<vector<int>> generateMatrix(int n) {
vector<vector<int>> ans(n, vector<int>(n));
vector<vector<int>> ans(n, vector<int>(n, 0));
const int dirs[5] = {0, 1, 0, -1, 0};
int i = 0, j = 0, k = 0;
for (int v = 1; v <= n * n; ++v) {
ans[i][j] = v;
int x = i + dirs[k][0], y = j + dirs[k][1];
if (x < 0 || y < 0 || x >= n || y >= n || ans[x][y]) {
int x = i + dirs[k], y = j + dirs[k + 1];
if (x < 0 || x >= n || y < 0 || y >= n || ans[x][y] != 0) {
k = (k + 1) % 4;
x = i + dirs[k][0], y = j + dirs[k][1];
}
i = x, j = y;
i += dirs[k];
j += dirs[k + 1];
}
return ans;
}
Expand All @@ -136,16 +132,16 @@ func generateMatrix(n int) [][]int {
for i := range ans {
ans[i] = make([]int, n)
}
dirs := [4][2]int{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}
var i, j, k int
dirs := [5]int{0, 1, 0, -1, 0}
i, j, k := 0, 0, 0
for v := 1; v <= n*n; v++ {
ans[i][j] = v
x, y := i+dirs[k][0], j+dirs[k][1]
if x < 0 || y < 0 || x >= n || y >= n || ans[x][y] > 0 {
x, y := i+dirs[k], j+dirs[k+1]
if x < 0 || x >= n || y < 0 || y >= n || ans[x][y] != 0 {
k = (k + 1) % 4
x, y = i+dirs[k][0], j+dirs[k][1]
}
i, j = x, y
i += dirs[k]
j += dirs[k+1]
}
return ans
}
Expand All @@ -155,24 +151,17 @@ func generateMatrix(n int) [][]int {

```ts
function generateMatrix(n: number): number[][] {
let ans = Array.from({ length: n }, v => new Array(n));
let dir = [
[0, 1],
[1, 0],
[0, -1],
[-1, 0],
];
let i = 0,
j = 0;
for (let cnt = 1, k = 0; cnt <= n * n; cnt++) {
ans[i][j] = cnt;
let x = i + dir[k][0],
y = j + dir[k][1];
if (x < 0 || x == n || y < 0 || y == n || ans[x][y]) {
const ans: number[][] = Array.from({ length: n }, () => Array(n).fill(0));
const dirs = [0, 1, 0, -1, 0];
let [i, j, k] = [0, 0, 0];
for (let v = 1; v <= n * n; v++) {
ans[i][j] = v;
const [x, y] = [i + dirs[k], j + dirs[k + 1]];
if (x < 0 || x >= n || y < 0 || y >= n || ans[x][y] !== 0) {
k = (k + 1) % 4;
(x = i + dir[k][0]), (y = j + dir[k][1]);
}
(i = x), (j = y);
i += dirs[k];
j += dirs[k + 1];
}
return ans;
}
Expand All @@ -183,31 +172,19 @@ function generateMatrix(n: number): number[][] {
```rust
impl Solution {
pub fn generate_matrix(n: i32) -> Vec<Vec<i32>> {
let n = n as usize;
let mut res = vec![vec![0; n]; n];
let mut num = 1;
for i in 0..n / 2 {
for j in i..n - i - 1 {
res[i][j] = num;
num += 1;
}
for j in i..n - i - 1 {
res[j][n - i - 1] = num;
num += 1;
}
for j in i..n - i - 1 {
res[n - i - 1][n - j - 1] = num;
num += 1;
}
for j in i..n - i - 1 {
res[n - j - 1][i] = num;
num += 1;
let mut ans = vec![vec![0; n as usize]; n as usize];
let dirs = [0, 1, 0, -1, 0];
let (mut i, mut j, mut k) = (0, 0, 0);
for v in 1..=n * n {
ans[i as usize][j as usize] = v;
let (x, y) = (i + dirs[k], j + dirs[k + 1]);
if x < 0 || x >= n || y < 0 || y >= n || ans[x as usize][y as usize] != 0 {
k = (k + 1) % 4;
}
i += dirs[k];
j += dirs[k + 1];
}
if n % 2 == 1 {
res[n >> 1][n >> 1] = num;
}
res
ans
}
}
```
Expand All @@ -220,22 +197,17 @@ impl Solution {
* @return {number[][]}
*/
var generateMatrix = function (n) {
const ans = new Array(n).fill(0).map(() => new Array(n).fill(0));
const ans = Array.from({ length: n }, () => Array(n).fill(0));
const dirs = [0, 1, 0, -1, 0];
let [i, j, k] = [0, 0, 0];
const dirs = [
[0, 1],
[1, 0],
[0, -1],
[-1, 0],
];
for (let v = 1; v <= n * n; ++v) {
for (let v = 1; v <= n * n; v++) {
ans[i][j] = v;
let [x, y] = [i + dirs[k][0], j + dirs[k][1]];
if (x < 0 || y < 0 || x >= n || y >= n || ans[x][y] > 0) {
const [x, y] = [i + dirs[k], j + dirs[k + 1]];
if (x < 0 || x >= n || y < 0 || y >= n || ans[x][y] !== 0) {
k = (k + 1) % 4;
[x, y] = [i + dirs[k][0], j + dirs[k][1]];
}
[i, j] = [x, y];
i += dirs[k];
j += dirs[k + 1];
}
return ans;
};
Expand All @@ -245,41 +217,4 @@ var generateMatrix = function (n) {

<!-- solution:end -->

<!-- solution:start -->

### 方法二

<!-- tabs:start -->

#### TypeScript

```ts
function generateMatrix(n: number): number[][] {
const res = new Array(n).fill(0).map(() => new Array(n).fill(0));
let num = 1;
for (let i = 0; i < Math.floor(n / 2); i++) {
for (let j = i; j < n - i - 1; j++) {
res[i][j] = num++;
}
for (let j = i; j < n - i - 1; j++) {
res[j][n - i - 1] = num++;
}
for (let j = i; j < n - i - 1; j++) {
res[n - i - 1][n - j - 1] = num++;
}
for (let j = i; j < n - i - 1; j++) {
res[n - j - 1][i] = num++;
}
}
if (n % 2 === 1) {
res[n >> 1][n >> 1] = num;
}
return res;
}
```

<!-- tabs:end -->

<!-- solution:end -->

<!-- problem:end -->
Loading
Loading