Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content
/ STGCN Public
forked from hazdzz/STGCN

The PyTorch version of STGCN implemented by the paper

License

Notifications You must be signed in to change notification settings

drwxyh/STGCN

 
 

Repository files navigation

Spatio-Temporal Graph Convolutional Networks

issues forks stars License

About

The PyTorch version of STGCN implemented by the paper Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting with tons of bugs fixed.

Paper

https://arxiv.org/abs/1709.04875

Related works

  1. TCN: An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
  2. GLU and GTU: Language Modeling with Gated Convolutional Networks
  3. ChebyNet: Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
  4. GCN: Semi-Supervised Classification with Graph Convolutional Networks

Related code

  1. TCN: https://github.com/locuslab/TCN
  2. ChebyNet: https://github.com/mdeff/cnn_graph
  3. GCN: https://github.com/tkipf/pygcn

Model structure

Differents of code between mine and author's

  1. Fix tons of bugs
  2. Add Early Stopping approach
  3. Add Dropout approach
  4. Offer a different set of hyperparameters
  5. Offer config files for two different categories graph convolution

Requirements

To install requirements:

pip3 install -r requirements.txt

The result for road traffic prediction on dataset METR-LA (15/30/60 mins) (train: val: test = 70: 15: 15)

15 mins (H=3)

Model (paper) Model (code) Laplacian matrix type Gated activation function MAE RMSE WMAPE
STGCN (Cheb) STGCN_ChebConv (Ks=3, Kt=3) sym GLU 3.825249 7.949693 7.530186%
STGCN (1st) STGCN_GCNConv (Kt=3) sym GLU 3.703660 7.685864 7.290832%

30 mins (H=6)

Model (paper) Model (code) Laplacian matrix type Gated activation function MAE RMSE WMAPE
STGCN (Cheb) STGCN_ChebConv (Ks=3, Kt=3) sym GLU 4.789775 9.501917 9.430166%
STGCN (1st) STGCN_GCNConv (Kt=3) sym GLU 4.518740 8.863177 8.896550%

60 mins (H=12)

Model (paper) Model (code) Laplacian matrix type Gated activation function MAE RMSE WMAPE
STGCN (Cheb) STGCN_ChebConv (Ks=3, Kt=3) sym GLU 6.047641 11.888628 11.909882%
STGCN (1st) STGCN_GCNConv (Kt=3) sym GLU 5.997484 11.498759 11.811108%

The result for road traffic prediction on dataset PEMS-BAY (15/30/60 mins) (train: val: test = 70: 15: 15)

15 mins (H=3)

Model (paper) Model (code) Laplacian matrix type Gated activation function MAE RMSE WMAPE
STGCN (Cheb) STGCN_ChebConv (Ks=3, Kt=3) sym GLU 1.504175 3.031081 2.420486%
STGCN (1st) STGCN_GCNConv (Kt=3) sym GLU 1.472308 2.987471 2.369206%

30 mins (H=6)

Model (paper) Model (code) Laplacian matrix type Gated activation function MAE RMSE WMAPE
STGCN (Cheb) STGCN_ChebConv (Ks=3, Kt=3) sym GLU 1.919455 3.964940 3.088833%
STGCN (1st) STGCN_GCNConv (Kt=3) sym GLU 1.910708 3.948517 3.074757%

60 mins (H=12)

Model (paper) Model (code) Laplacian matrix type Gated activation function MAE RMSE WMAPE
STGCN (Cheb) STGCN_ChebConv (Ks=3, Kt=3) sym GLU 2.308847 4.690512 3.715672%
STGCN (1st) STGCN_GCNConv (Kt=3) sym GLU 2.306092 4.701984 3.711238%

About

The PyTorch version of STGCN implemented by the paper

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%