Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content

h-ssiqueira/Sort_Algorithms

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Sorting Algorithms

GitHub Repository Size Sorts available

Codacy Badge

Contributions

Ubuntu MAC Windows

Visual Studio Code

C

Summary

Description

A program to show the execution time and the variaty of sorting algorithms in C language. There are 48 sorting algorithms avaliable distributed in 8 different categories.


How to execute

On program settings there are avaliable modifications noted in table below:

Configuration Default
Sorting case Random
Random interval 32
Length of array 10
Save results in a text file NO
Display arrays YES
Display execution time YES

Note: you need to have the GCC compiler installed in your machine to execute the instructions below to run the program.


Linux & MAC

Open a terminal and go to project's directory. Execute make in terminal allow to compile the program. Commands avaliable to execute with make (make ${command}):

Command Description
clean Clear all objects generated
cr Compile and run
rmproper Clear all object files
run Execute main program

Windows

On Command Prompt or PowerShell and go to project's directory and execute execute.bat.


Screens

Menu

Menu

Submenu

Submenu

Settings

Settings

Execution

Execution

Exit

Exit


Algorithms

Category Sort
Esoteric & Fun & Miscellaneous Bad Sort
Bogo Bogo Sort
Bogo Sort
Bubble Bogo Sort
Cocktail Bogo Sort
Exchange Bogo Sort
Less Bogo Sort
Pancake Sort
Silly Sort
Sleep Sort
Slow Sort
Spaghetti Sort
Stooge Sort
Exchange Bubble Sort
Circle Sort
Cocktail Shaker Sort
Comb Sort
Dual Pivot Quick Sort
Gnome Sort
Odd-Even Sort
Optimized Bubble Sort
Optimized Cocktail Shaker Sort
Optimized Gnome Sort
Quick Sort
Quick Sort 3-way
Stable Quick Sort
Hybrids Tim Sort
Insertion AVL Tree Sort
Binary Insertion Sort
Cycle Sort
Insertion Sort
Patience Sort
Shell Sort
Tree Sort
Merge Bottom-up Merge Sort
In-Place Merge Sort
Merge Sort
Networks & Concurrent Bitonic Sort
Pairwise Network Sort
Non-Comparison & Distribution Bucket Sort
Counting Sort
Gravity (Bead) Sort
Pigeonhole Sort
Radix LSD Sort
Selection Double Selection Sort
Max Heap Sort
Min Heap Sort
Selection Sort

Complexity Table

Algorithm Worst case Best case Average Space complexity In-place Stable Notes
Bad Sort O(N³) O(N³) O(N³) O(1) ✔️
Bogo Bogo Sort O(infinity) O(N²) O((N+1)!) O(1) ✔️ The worst case can be unbounded due to random manipulation
Bogo Sort O(infinity) O(N) O((N+1)!) O(1) ✔️ The worst case can be unbounded due to random manipulation
Bubble Bogo Sort O(infinity) O(N) O((N+1)!) O(1) ✔️ ✔️ The worst case can be unbounded due to random manipulation
Cocktail Bogo Sort O(infinity) O(N) O((N+1)!) O(1) ✔️ The worst case can be unbounded due to random manipulation
Exchange Bogo Sort O(infinity) O(N) O((N+1)!) O(1) ✔️ The worst case can be unbounded due to random manipulation
Less Bogo Sort O(infinity) O(N²) O((N+1)!) O(1) ✔️ The worst case can be unbounded due to random manipulation
Pancake Sort O(N²) O(N²) O(N²) O(1) ✔️
Silly Sort O(N²) O(N²) O(N²) O(1) ✔️
Sleep Sort O(INT_MAX) O(max(input) + N) O(max(input) + N) O(N) ✔️ Take use of CPU scheduler to sort
Slow Sort O(N*N!) O(N) O((N+1)!) O(1) ✔️
Spaghetti Sort O(N) O(N) O(N) O(N) ✔️
Stooge Sort O(N^(log 3 / log 1.5)) O(N^(log 3 / log 1.5)) O(N^(log 3 / log 1.5)) O(N)
Bubble Sort O(N²) O(N) O(N²) O(1) ✔️ ✔️
Circle Sort O(N log N log N) O(N log N) O(N log N) O(1) ✔️
Cocktail Shaker Sort O(N²) O(N²) O(N²) O(1) ✔️ ✔️
Comb Sort O(N²) O(N log N) O(N² / 2^p) O(1) ✔️ P is the number of increments
Dual Pivot Quick Sort O(N²) O(N log N) O(N log N) O(log N) ✔️
Gnome Sort O(N²) O(N) O(N²) O(1) ✔️ ✔️
Odd-Even Sort O(N²) O(N) O(N²) O(1) ✔️ ✔️
Optimized Bubble Sort O(N²) O(N) O(N²) O(1) ✔️ ✔️
Optimized Cocktail Shaker Sort O(N²) O(N) O(N²) O(1) ✔️ ✔️
Optimized Gnome Sort O(N²) O(N) O(N²) O(1) ✔️ ✔️
Quick Sort O(N²) O(N log N) O(N log N) O(log N) ✔️
Quick Sort 3-way O(N²) O(N) O(N log N) O(log N) or O(N) ✔️
Stable Quick Sort O(N²) O(N log N) O(N log N) O(N) ✔️ ✔️
Tim Sort O(N log N) O(N) O(N log N) O(N) ✔️
AVL Tree Sort O(N log N) O(N) O(N log N) O(N) ✔️ In worst case, O(N²) when using Binary Search Tree and O(N log N) when using Self-Balanced Binary Search Tree
Binary Insertion Sort O(N log N) O(N) O(N log N) O(1) ✔️ ✔️
Cycle Sort O(N²) O(N²) O(N²) O(1) ✔️
Insertion Sort O(N²) O(N) O(N²) O(1) ✔️ ✔️
Patience Sort O(N log N) O(N) O(N log N) O(N) ✔️
Shell Sort O(N<sup>3/2</sup>) or O(N log² N) O(N log N) O(N^1.25) to O(N²) O(1) ✔️
Tree Sort O(N²) O(N log N) O(N log N) O(N) ✔️ In worst case, O(N²) when using Binary Search Tree and O(N log N) when using Self-Balanced Binary Search Tree
Bottom-up Merge Sort O(N log N) O(N log N) O(N log N) O(N) ✔️
In-Place Merge Sort O(N²) O(N²) O(N²) O(log N) ✔️ ✔️
Merge Sort O(N log N) O(N log N) O(N log N) O(N) ✔️
Bitonic Sort O(log² N) O(log² N) O(log² N) O(N log² N) ✔️
Pairwise Network Sort (log N)(log N+1)/2 or O(N log N) O(N log N) O(N log N) N(log N)(log N-1)/4 + N-1 ✔️ Worst case is using parallel time and space complexity non-parallel time
Bucket Sort O(N²) O(N+k) O(N+k) O(N+k) ✔️ k is the number of buckets
Counting Sort O(N+k) O(N+k) O(N+k) O(N+k) ✔️ k is the range of input data
Gravity (Bead) Sort O(S) O(1) or O(sqrt(N)) O(N) O(N²) ✔️ S is the sum of array elements, O(1) cannot be implemented in practice
Pigeonhole Sort O(N+n) O(N+n) O(N+n) O(N+n) ✔️ N is the number of elements and n is the range of input data
Radix LSD Sort O(NW) O(NW) O(NW) O(N) ✔️ W is the maxumum element width (bits)
Double Selection Sort O(N²) O(N²) O(N²) O(1) ✔️ \frac{N^2-N}{2} Comparisons
Max Heap Sort O(N log N) O(N log N) O(N log N) O(1) ✔️
Min Heap Sort O(N log N) O(N log N) O(N log N) O(1) ✔️
Selection Sort O(N²) O(N²) O(N²) O(1) ✔️ \frac{N^2-N}{4} Comparisons