[NeurIPS'2023] Accountability in Offline Reinforcement Learning: Explaining Decisions with a Corpus of Examples
Test-time decisions made by an agent should have a decision basis in the training decision dataset. Using a latent space decomposition and similarity-based matching, decisions made by agents in offline reinforcement learning can be interpretable.
gym==0.26.2
pytorch==2.1.0
shapely==2.0.2
scipy==1.11.3
medkit-learn==0.1.0
tqdm
The following code reproduces the results reported in the paper.
- To generate a batched dataset, run
python3 generate_data.py --env ENV_NAME
- Change the --inv_forv = 1.0 or -1.0 will generate an offline dataset for normal or reversed dynamics. (to manifest the multiple potential outcome settings/ POMDP setting)
- Change the --env = 'Pendulum-v1', 'LunarLanderContinuous-v2' to generate data for different tasks. The Pendulum-v1 dataset is provided in the dataset folder.
- To reproduce our main results, run
- Pendulum-v1 experiments (quantitative)
python3 reproduce_pendulum-het.py --dsize 600000
- Maze experiments (qualitative)
python3 reproduce_maze_conservation.py
python3 reproduce_maze_accountability.py
- Reproduce Ward (qualitative and quantitative)
python3 reproduce_ward.py
@article{sun2023accountability,
title={Accountability in Offline Reinforcement Learning: Explaining Decisions with a Corpus of Examples},
author={Sun, Hao and H{\"u}y{\"u}k, Alihan and Jarrett, Daniel and van der Schaar, Mihaela},
journal={arXiv preprint arXiv:2310.07747},
year={2023}
}