Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content

meghdadk/SCRUB

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This is a Python implementation of "Towards Unbounded Machine Unlearning"

The main experiments

  • Use small_scale_unlearning.ipynb for:
    • small-scale experiemnts
    • large forget-set size experiemnts
  • Use large_scale_unlearning.ipynb for:
    • large-scale experiments
  • Use small_scale_ictest.ipynb for:
    • Interclass Confusion Metric experiemnts from pdf
  • Use large_scale_ictest.ipynb for:
    • Interclass Confusion Metric experiemnts from pdf
  • Use MIA_experiments.ipynb for:
    • Membership Inference Attack based on the model's loss values

Models choices

  • For small-scale experiments:
    • allcnn --filters = 1.0
    • resnet --filters = 0.4
  • For large-scale experiments:
    • allcnn --filters = 1.0
    • resnet --filters = 1.0

Datasets choices

  • For small-scale datasets:
    • small_cifar5
    • small_lacuna5
  • For large-scale datasets:
    • cifar10
    • lacuna10

References

We have used the code from the following two repositories:

(Selective Forgetting)[https://github.com/AdityaGolatkar/SelectiveForgetting.git]

(RepDistiller)[https://github.com/HobbitLong/RepDistiller.git]

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published