Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content

This project divided into Two-part : (( Dog Breed Classifier )) Capstone-Proposal + Capstone-Project

Notifications You must be signed in to change notification settings

nancyalaswad90/Capstone-Proposal

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

.

cap

.

This project divided into Two part : Dog Breed Classifier

.

Project Overview

Welcome to the Convolutional Neural Networks (CNN) project in the AI Nanodegree! In this project, you will learn how to build a pipeline that can be used within a web or mobile app to process real-world, user-supplied images. Given an image of a dog, your algorithm will identify an estimate of the canine’s breed. If supplied an image of a human, the code will identify the resembling dog breed.

Sample Output

Along with exploring state-of-the-art CNN models for classification and localization, you will make important design decisions about the user experience for your app. Our goal is that by completing this lab, you understand the challenges involved in piecing together a series of models designed to perform various tasks in a data processing pipeline. Each model has its strengths and weaknesses, and engineering a real-world application often involves solving many problems without a perfect answer. Your imperfect solution will nonetheless create a fun user experience!

Project Instructions

Instructions

  1. Clone the repository and navigate to the downloaded folder.

    	git clone https://github.com/udacity/deep-learning-v2-pytorch.git
    	cd deep-learning-v2-pytorch/project-dog-classification
    
  2. Download the dog dataset. Unzip the folder and place it in the repo, at location path/to/dog-project/dogImages. The dogImages/ folder should contain 133 folders, each corresponding to a different dog breed.

  3. Download the human dataset. Unzip the folder and place it in the repo, at location path/to/dog-project/lfw. If you are using a Windows machine, you are encouraged to use 7zip to extract the folder.

  4. Make sure you have already installed the necessary Python packages according to the README in the program repository.

  5. Open a terminal window and navigate to the project folder. Open the notebook and follow the instructions.

    	jupyter notebook dog_app.ipynb
    

About

This project divided into Two-part : (( Dog Breed Classifier )) Capstone-Proposal + Capstone-Project

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published