Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content

Python wrapper of BitInformation.jl to easily compress xarray datasets based on their information content

License

Notifications You must be signed in to change notification settings

observingClouds/xbitinfo

Repository files navigation


xbitinfo: Retrieve information content and compress accordingly

Binder Open In SageMaker Studio Lab CI pre-commit.ci status Documentation Status pypi Conda (channel only)

This is an xarray-wrapper around BitInformation.jl to retrieve and apply bitrounding from within python. The package intends to present an easy pipeline to compress (climate) datasets based on the real information content.

How the science works

Paper

Klöwer, M., Razinger, M., Dominguez, J. J., Düben, P. D., & Palmer, T. N. (2021). Compressing atmospheric data into its real information content. Nature Computational Science, 1(11), 713–724. doi: 10/gnm4jj

Video

Video

Julia Repository

BitInformation.jl

How to install

Preferred installation

conda install -c conda-forge xbitinfo

Alternative installation

pip install xbitinfo # ensure to install julia manually

How to use

import xarray as xr
import xbitinfo as xb
example_dataset = 'eraint_uvz'
ds = xr.tutorial.load_dataset(example_dataset)
bitinfo = xb.get_bitinformation(ds, dim="longitude")  # calling bitinformation.jl.bitinformation
keepbits = xb.get_keepbits(bitinfo, inflevel=0.99)  # get number of mantissa bits to keep for 99% real information
ds_bitrounded = xb.xr_bitround(ds, keepbits)  # bitrounding keeping only keepbits mantissa bits
ds_bitrounded.to_compressed_netcdf(outpath)  # save to netcdf with compression

Credits