- Install nsgp-torch package
pip install git+https://github.com/patel-zeel/nsgp-torch
- Install other dependencies
pip install -r requirements.txt
- Run the experiments from individual folders.
A
- ARD enabled
A_bar
- ARD disabled
N
- Non-stationary kernel
N_bar
- Stationary kernel
C
- Using categorical kernel for categorical features without one-hot-encoding
C_bar
- Using RBF/Matern kernel for categorical features with one-hot-encoding
L
- Using Local periodic kernel for time feature
L_bar
- Using RBF/Matern kernel for time feature
AN_barCL_bar
- GP with ARD enabled stationary kernel with categorical kernel for categorical features and RBF/Matern kernel for time feature
Folder | Description |
---|---|
data | data for each baseline and main approach |
preprocessing | preprocessing pipeline applied to data |
stat_gp_cat | Stationary GP with categorical kernel (C fixed, L variable) |
stat_gp_no_cat | Stationary GP without categorical kernel (C_bar fixed, L variable) |
nonstat_gp_cat | Non-stationary GP with categorical kernel (C fixed, L variable) |
Baseline implementation of paper "A Neural Attention Model for Urban Air Quality Inference: Learning the Weights of Monitoring Stations" (ADAIN) is available in this file.